亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Efficient and accurate extraction of microstructures in micrographs of materials is essential in process optimization and the exploration of structure-property relationships. Deep learning-based image segmentation techniques that rely on manual annotation are laborious and time-consuming and hardly meet the demand for model transferability and generalization on various source images. Segment Anything Model (SAM), a large visual model with powerful deep feature representation and zero-shot generalization capabilities, has provided new solutions for image segmentation. In this paper, we propose MatSAM, a general and efficient microstructure extraction solution based on SAM. A simple yet effective point-based prompt generation strategy is designed, grounded on the distribution and shape of microstructures. Specifically, in an unsupervised and training-free way, it adaptively generates prompt points for different microscopy images, fuses the centroid points of the coarsely extracted region of interest (ROI) and native grid points, and integrates corresponding post-processing operations for quantitative characterization of microstructures of materials. For common microstructures including grain boundary and multiple phases, MatSAM achieves superior zero-shot segmentation performance to conventional rule-based methods and is even preferable to supervised learning methods evaluated on 16 microscopy datasets whose micrographs are imaged by the optical microscope (OM) and scanning electron microscope (SEM). Especially, on 4 public datasets, MatSAM shows unexpected competitive segmentation performance against their specialist models. We believe that, without the need for human labeling, MatSAM can significantly reduce the cost of quantitative characterization and statistical analysis of extensive microstructures of materials, and thus accelerate the design of new materials.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 查準率/準確率 · Principle · HTTPS · Vision ·
2024 年 4 月 15 日

Scene graph generation has emerged as a prominent research field in computer vision, witnessing significant advancements in the recent years. However, despite these strides, precise and thorough definitions for the metrics used to evaluate scene graph generation models are lacking. In this paper, we address this gap in the literature by providing a review and precise definition of commonly used metrics in scene graph generation. Our comprehensive examination clarifies the underlying principles of these metrics and can serve as a reference or introduction to scene graph metrics. Furthermore, to facilitate the usage of these metrics, we introduce a standalone Python package called SGBench that efficiently implements all defined metrics, ensuring their accessibility to the research community. Additionally, we present a scene graph benchmarking web service, that enables researchers to compare scene graph generation methods and increase visibility of new methods in a central place. All of our code can be found at //lorjul.github.io/sgbench/.

The rapid development of large language model (LLM) evaluation methodologies and datasets has led to a profound challenge: integrating state-of-the-art evaluation techniques cost-effectively while ensuring reliability, reproducibility, and efficiency. Currently, there is a notable absence of a unified and adaptable framework that seamlessly integrates various evaluation approaches. Moreover, the reliability of evaluation findings is often questionable due to potential data contamination, with the evaluation efficiency commonly overlooked when facing the substantial costs associated with LLM inference. In response to these challenges, we introduce FreeEval, a modular and scalable framework crafted to enable trustworthy and efficient automatic evaluations of LLMs. Firstly, FreeEval's unified abstractions simplify the integration and improve the transparency of diverse evaluation methodologies, encompassing dynamic evaluation that demand sophisticated LLM interactions. Secondly, the framework integrates meta-evaluation techniques like human evaluation and data contamination detection, which, along with dynamic evaluation modules in the platform, enhance the fairness of the evaluation outcomes. Lastly, FreeEval is designed with a high-performance infrastructure, including distributed computation and caching strategies, enabling extensive evaluations across multi-node, multi-GPU clusters for open-source and proprietary LLMs.

Categories and categorical structures are increasingly recognized as useful abstractions for modeling in science and engineering. To uniformly implement category-theoretic mathematical models in software, we introduce GATlab, a domain-specific language for algebraic specification embedded in a technical programming language. GATlab is based on generalized algebraic theories (GATs), a logical system extending algebraic theories with dependent types so as to encompass category theory. Using GATlab, the programmer can specify generalized algebraic theories and their models, including both free models, based on symbolic expressions, and computational models, defined by arbitrary code in the host language. Moreover, the programmer can define maps between theories and use them to declaratively migrate models of one theory to models of another. In short, GATlab aims to provide a unified environment for both computer algebra and software interface design with generalized algebraic theories. In this paper, we describe the design, implementation, and applications of GATlab.

There is growing interest in engineering unconventional computing devices that leverage the intrinsic dynamics of physical substrates to perform fast and energy-efficient computations. Granular metamaterials are one such substrate that has emerged as a promising platform for building wave-based information processing devices with the potential to integrate sensing, actuation, and computation. Their high-dimensional and nonlinear dynamics result in nontrivial and sometimes counter-intuitive wave responses that can be shaped by the material properties, geometry, and configuration of individual grains. Such highly tunable rich dynamics can be utilized for mechanical computing in special-purpose applications. However, there are currently no general frameworks for the inverse design of large-scale granular materials. Here, we build upon the similarity between the spatiotemporal dynamics of wave propagation in material and the computational dynamics of Recurrent Neural Networks to develop a gradient-based optimization framework for harmonically driven granular crystals. We showcase how our framework can be utilized to design basic logic gates where mechanical vibrations carry the information at predetermined frequencies. We compare our design methodology with classic gradient-free methods and find that our approach discovers higher-performing configurations with less computational effort. Our findings show that a gradient-based optimization method can greatly expand the design space of metamaterials and provide the opportunity to systematically traverse the parameter space to find materials with the desired functionalities.

The exploration of molecular systems' potential energy surface is important for comprehending their complex behaviors, particularly through identifying various metastable states. However, the transition between these states is often hindered by substantial energy barriers, demanding prolonged molecular simulations that consume considerable computational efforts. Our study introduces the GradNav algorithm, which enhances the exploration of the energy surface, accelerating the reconstruction of the potential energy surface (PES). This algorithm employs a strategy of initiating short simulation runs from updated starting points, derived from prior observations, to effectively navigate across potential barriers and explore new regions. To evaluate GradNav's performance, we introduce two metrics: the deepest well escape frame (DWEF) and the search success initialization ratio (SSIR). Through applications on Langevin dynamics within Mueller-type potential energy surfaces and molecular dynamics simulations of the Fs-Peptide protein, these metrics demonstrate GradNav's enhanced ability to escape deep energy wells, as shown by reduced DWEF values, and its reduced reliance on initial conditions, highlighted by increased SSIR values. Consequently, this improved exploration capability enables more precise energy estimations from simulation trajectories.

Memory consistency model (MCM) issues in out-of-order-issue microprocessor-based shared-memory systems are notoriously non-intuitive and a source of hardware design bugs. Prior hardware verification work is limited to in-order-issue processors, to proving the correctness only of some test cases, or to bounded verification that does not scale in practice beyond 7 instructions across all threads. Because cache coherence (i.e., write serialization and atomicity) and pipeline front-end verification and testing are well-studied, we focus on the memory ordering in an out-of-order-issue processor's load-store queue and the coherence interface between the core and global coherence. We propose QED based on the key notion of observability that any hardware reordering matters only if a forbidden value is produced. We argue that one needs to consider (1) only directly-ordered instruction pairs -- transitively non-redundant pairs connected by an edge in the MCM-imposed partial order -- and not all in-flight instructions, and (2) only the ordering of external events from other cores (e.g.,invalidations) but not the events' originating cores, achieving verification scalability in both the numbers of in-flight memory instructions and of cores. Exhaustively considering all pairs of instruction types and all types of external events intervening between each pair, QED attempts to restore any reordered instructions to an MCM-complaint order without changing the execution values, where failure indicates an MCM violation. Each instruction pair's exploration results in a decision tree of simple, narrowly-defined predicates to be evaluated against the RTL. In our experiments, we automatically generate the decision trees for SC, TSO, and RISC-V WMO, and illustrate automatable verification by evaluating a substantial predicate against BOOMv3 implementation of RISC-V WMO, leaving full automation to future work.

The explosion of data available in life sciences is fueling an increasing demand for expressive models and computational methods. Graph transformation is a model for dynamic systems with a large variety of applications. We introduce a novel method of the graph transformation model construction, combining generative and dynamical viewpoints to give a fully automated data-driven model inference method. The method takes the input dynamical properties, given as a "snapshot" of the dynamics encoded by explicit transitions, and constructs a compatible model. The obtained model is guaranteed to be minimal, thus framing the approach as model compression (from a set of transitions into a set of rules). The compression is permissive to a lossy case, where the constructed model is allowed to exhibit behavior outside of the input transitions, thus suggesting a completion of the input dynamics. The task of graph transformation model inference is naturally highly challenging due to the combinatorics involved. We tackle the exponential explosion by proposing a heuristically minimal translation of the task into a well-established problem, set cover, for which highly optimized solutions exist. We further showcase how our results relate to Kolmogorov complexity expressed in terms of graph transformation.

Coding theory revolves around the incorporation of redundancy into transmitted symbols, computation tasks, and stored data to guard against adversarial manipulation. However, error correction in coding theory is contingent upon a strict trust assumption. In the context of computation and storage, it is required that honest nodes outnumber adversarial ones by a certain margin. However, in several emerging real-world cases, particularly, in decentralized blockchain-oriented applications, such assumptions are often unrealistic. Consequently, despite the important role of coding in addressing significant challenges within decentralized systems, its applications become constrained. Still, in decentralized platforms, a distinctive characteristic emerges, offering new avenues for secure coding beyond the constraints of conventional methods. In these scenarios, the adversary benefits when the legitimate decoder recovers the data, and preferably with a high estimation error. This incentive motivates them to act rationally, trying to maximize their gains. In this paper, we propose a game theoretic formulation for coding, called the game of coding, that captures this unique dynamic where each of the adversary and the data collector (decoder) have a utility function to optimize. The utility functions reflect the fact that both the data collector and the adversary are interested in increasing the chance of data being recoverable by the data collector. Moreover, the utility functions express the interest of the data collector to estimate the input with lower estimation error, but the opposite interest of the adversary. As a first, still highly non-trivial step, we characterize the equilibrium of the game for the repetition code with a repetition factor of 2, for a wide class of utility functions with minimal assumptions.

Using correct design metrics and understanding the limitations of the underlying technology is critical to developing effective scheduling algorithms. Unfortunately, existing scheduling techniques used \emph{incorrect} metrics and had \emph{unrealistic} assumptions for fair scheduling of multi-tenant FPGAs where each tenant is aimed to share approximately the same number of resources both spatially and temporally. This paper introduces an enhanced fair scheduling algorithm for multi-tenant FPGA use, addressing previous metric and assumption issues, with three specific improvements claimed First, our method ensures spatiotemporal fairness by considering both spatial and temporal aspects, addressing the limitation of prior work that assumed uniform task latency. Second, we incorporate energy considerations into fairness by adjusting scheduling intervals and accounting for energy overhead, thereby balancing energy efficiency with fairness. Third, we acknowledge overlooked aspects of FPGA multi-tenancy, including heterogeneous regions and the constraints on dynamically merging/splitting partially reconfigurable regions. We develop and evaluate our improved fair scheduling algorithm with these three enhancements. Inspired by the Greek goddess of law and personification of justice, we name our fair scheduling solution THEMIS: \underline{T}ime, \underline{H}eterogeneity, and \underline{E}nergy \underline{Mi}nded \underline{S}cheduling. We used the Xilinx Zedboard XC7Z020 to quantify our approach's savings. Compared to previous algorithms, our improved scheduling algorithm enhances fairness between 24.2--98.4\% and allows a trade-off between 55.3$\times$ in energy vs. 69.3$\times$ in fairness. The paper thus informs cloud providers about future scheduling optimizations for fairness with related challenges and opportunities.

The adoption of high-density electrode systems for human-machine interfaces in real-life applications has been impeded by practical and technical challenges, including noise interference, motion artifacts and the lack of compact electrode interfaces. To overcome some of these challenges, we introduce a wearable and stretchable electromyography (EMG) array, and present its design, fabrication methodology, characterisation, and comprehensive evaluation. Our proposed solution comprises dry-electrodes on flexible printed circuit board (PCB) substrates, eliminating the need for time-consuming skin preparation. The proposed fabrication method allows the manufacturing of stretchable sleeves, with consistent and standardised coverage across subjects. We thoroughly tested our developed prototype, evaluating its potential for application in both research and real-world environments. The results of our study showed that the developed stretchable array matches or outperforms traditional EMG grids and holds promise in furthering the real-world translation of high-density EMG for human-machine interfaces.

北京阿比特科技有限公司