亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of extracting randomness from somewhere-random sources, and related combinatorial phenomena: partition analogues of Shearer's lemma on projections. A somewhere-random source is a tuple $(X_1, \ldots, X_t)$ of (possibly correlated) $\{0,1\}^n$-valued random variables $X_i$ where for some unknown $i \in [t]$, $X_i$ is guaranteed to be uniformly distributed. An $extracting$ $merger$ is a seeded device that takes a somewhere-random source as input and outputs nearly uniform random bits. We study the seed-length needed for extracting mergers with constant $t$ and constant error. We show: $\cdot$ Just like in the case of standard extractors, seedless extracting mergers with even just one output bit do not exist. $\cdot$ Unlike the case of standard extractors, it $is$ possible to have extracting mergers that output a constant number of bits using only constant seed. Furthermore, a random choice of merger does not work for this purpose! $\cdot$ Nevertheless, just like in the case of standard extractors, an extracting merger which gets most of the entropy out (namely, having $\Omega$ $(n)$ output bits) must have $\Omega$ $(\log n)$ seed. This is the main technical result of our work, and is proved by a second-moment strengthening of the graph-theoretic approach of Radhakrishnan and Ta-Shma to extractors. In contrast, seed-length/output-length tradeoffs for condensing mergers (where the output is only required to have high min-entropy), can be fully explained by using standard condensers. Inspired by such considerations, we also formulate a new and basic class of problems in combinatorics: partition analogues of Shearer's lemma. We show basic results in this direction; in particular, we prove that in any partition of the $3$-dimensional cube $[0,1]^3$ into two parts, one of the parts has an axis parallel $2$-dimensional projection of area at least $3/4$.

相關內容

This work proposes to use evolutionary computation as a pathway to allow a new perspective on the modeling of energy expenditure and recovery of an individual athlete during exercise. We revisit a theoretical concept called the "three component hydraulic model" which is designed to simulate metabolic systems during exercise and which is able to address recently highlighted shortcomings of currently applied performance models. This hydraulic model has not been entirely validated on individual athletes because it depends on physiological measures that cannot be acquired in the required precision or quantity. This paper introduces a generalized interpretation and formalization of the three component hydraulic model that removes its ties to concrete metabolic measures and allows to use evolutionary computation to fit its parameters to an athlete.

This study presents the vectorization of metaheuristic algorithms as the first stage of vectorized optimization implementation. Vectorization is a technique for converting an algorithm, which operates on a single value at a time to one that operates on a collection of values at a time to execute rapidly. The vectorization technique also operates by replacing multiple iterations into a single operation, which improves the algorithm's performance in speed and makes the algorithm simpler and easier to be implemented. It is important to optimize the algorithm by implementing the vectorization technique, which improves the program's performance, which requires less time and can run long-running test functions faster, also execute test functions that cannot be implemented in non-vectorized algorithms and reduces iterations and time complexity. Converting to vectorization to operate several values at once and enhance algorithms' speed and efficiency is a solution for long running times and complicated algorithms. The objective of this study is to use the vectorization technique on one of the metaheuristic algorithms and compare the results of the vectorized algorithm with the algorithm which is non-vectorized.

This paper studies a two-stage model of experimentation, where the researcher first samples representative units from an eligible pool, then assigns each sampled unit to treatment or control. To implement balanced sampling and assignment, we introduce a new family of finely stratified designs that generalize matched pairs randomization to propensities p(x) not equal to 1/2. We show that two-stage stratification nonparametrically dampens the variance of treatment effect estimation. We formulate and solve the optimal stratification problem with heterogeneous costs and fixed budget, providing simple heuristics for the optimal design. In settings with pilot data, we show that implementing a consistent estimate of this design is also efficient, minimizing asymptotic variance subject to the budget constraint. We also provide new asymptotically exact inference methods, allowing experimenters to fully exploit the efficiency gains from both stratified sampling and assignment. An application to nine papers recently published in top economics journals demonstrates the value of our methods.

We introduce a theoretical framework for differentiable surface evolution that allows discrete topology changes through the use of topological derivatives for variational optimization of image functionals. While prior methods for inverse rendering of geometry rely on silhouette gradients for topology changes, such signals are sparse. In contrast, our theory derives topological derivatives that relate the introduction of vanishing holes and phases to changes in image intensity. As a result, we enable differentiable shape perturbations in the form of hole or phase nucleation. We validate the proposed theory with optimization of closed curves in 2D and surfaces in 3D to lend insights into limitations of current methods and enable improved applications such as image vectorization, vector-graphics generation from text prompts, single-image reconstruction of shape ambigrams and multi-view 3D reconstruction.

This report surveys advances in deep learning-based modeling techniques that address four different 3D indoor scene analysis tasks, as well as synthesis of 3D indoor scenes. We describe different kinds of representations for indoor scenes, various indoor scene datasets available for research in the aforementioned areas, and discuss notable works employing machine learning models for such scene modeling tasks based on these representations. Specifically, we focus on the analysis and synthesis of 3D indoor scenes. With respect to analysis, we focus on four basic scene understanding tasks -- 3D object detection, 3D scene segmentation, 3D scene reconstruction and 3D scene similarity. And for synthesis, we mainly discuss neural scene synthesis works, though also highlighting model-driven methods that allow for human-centric, progressive scene synthesis. We identify the challenges involved in modeling scenes for these tasks and the kind of machinery that needs to be developed to adapt to the data representation, and the task setting in general. For each of these tasks, we provide a comprehensive summary of the state-of-the-art works across different axes such as the choice of data representation, backbone, evaluation metric, input, output, etc., providing an organized review of the literature. Towards the end, we discuss some interesting research directions that have the potential to make a direct impact on the way users interact and engage with these virtual scene models, making them an integral part of the metaverse.

Statistical decision problems lie at the heart of statistical machine learning. The simplest problems are binary and multiclass classification and class probability estimation. Central to their definition is the choice of loss function, which is the means by which the quality of a solution is evaluated. In this paper we systematically develop the theory of loss functions for such problems from a novel perspective whose basic ingredients are convex sets with a particular structure. The loss function is defined as the subgradient of the support function of the convex set. It is consequently automatically proper (calibrated for probability estimation). This perspective provides three novel opportunities. It enables the development of a fundamental relationship between losses and (anti)-norms that appears to have not been noticed before. Second, it enables the development of a calculus of losses induced by the calculus of convex sets which allows the interpolation between different losses, and thus is a potential useful design tool for tailoring losses to particular problems. In doing this we build upon, and considerably extend existing results on $M$-sums of convex sets. Third, the perspective leads to a natural theory of ``polar'' loss functions, which are derived from the polar dual of the convex set defining the loss, and which form a natural universal substitution function for Vovk's aggregating algorithm.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review salient neural architectures in which attention has been incorporated, and discuss applications in which modeling attention has shown a significant impact. Finally, we also describe how attention has been used to improve the interpretability of neural networks. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司