亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern society is getting accustomed to the Internet of Things (IoT) and Cyber-Physical Systems (CPS) for a variety of applications that involves security-critical user data and information transfers. In the lower end of the spectrum, these devices are resource-constrained with no attack protection. They become a soft target for malicious code modification attacks that steals and misuses device data in malicious activities. The resilient system requires continuous detection, prevention, and/or recovery and correct code execution (including in degraded mode). By end large, existing security primitives (e.g., secure-boot, Remote Attestation RA, Control Flow Attestation (CFA) and Data Flow Attestation (DFA)) focuses on detection and prevention, leaving the proof of code execution and recovery unanswered. To this end, the proposed work presents lightweight RARES -- Runtime Attack Resilient Embedded System design using verified Proof-of-Execution. It presents first custom hardware control register (Ctrl_register) based runtime memory modification attacks classification and detection technique. It further demonstrates the Proof Of Concept (POC) implementation of use-case-specific attacks prevention and onboard recovery techniques. The prototype implementation on Artix 7 Field Programmable Gate Array (FPGA) and state-of-the-art comparison demonstrates very low (2.3%) resource overhead and efficacy of the proposed solution.

相關內容

系(xi)統(tong)設計(ji)是新系(xi)統(tong)的物理(li)設計(ji)階段。根據系(xi)統(tong)分析階段所確定的新系(xi)統(tong)的邏輯模型(xing)、功(gong)能要求,在用戶提供(gong)的環境(jing)條件下,設計(ji)出(chu)一個能在計(ji)算機網絡環境(jing)上實(shi)施的方案,即(ji)建(jian)立新系(xi)統(tong)的物理(li)模型(xing)。

Weakly hard real-time systems can, to some degree, tolerate deadline misses, but their schedulability still needs to be analyzed to ensure their quality of service. Such analysis usually occurs at early design stages to provide implementation guidelines to engineers so that they can make better design decisions. Estimating worst-case execution times (WCET) is a key input to schedulability analysis. However, early on during system design, estimating WCET values is challenging and engineers usually determine them as plausible ranges based on their domain knowledge. Our approach aims at finding restricted, safe WCET sub-ranges given a set of ranges initially estimated by experts in the context of weakly hard real-time systems. To this end, we leverage (1) multi-objective search aiming at maximizing the violation of weakly hard constraints in order to find worst-case scheduling scenarios and (2) polynomial logistic regression to infer safe WCET ranges with a probabilistic interpretation. We evaluated our approach by applying it to an industrial system in the satellite domain and several realistic synthetic systems. The results indicate that our approach significantly outperforms a baseline relying on random search without learning, and estimates safe WCET ranges with a high degree of confidence in practical time (< 23h).

With the research advancement of Artificial Intelligence in the last years, there are new opportunities to mitigate real-world problems and advance technologically. Image recognition models in particular, are assigned with perception tasks to mitigate complex real-world challenges and lead to new solutions. Furthermore, the computational complexity and demand for resources of such models has also increased. To mitigate this, model optimization and hardware acceleration has come into play, but effectively integrating such concepts is a challenging and error-prone process. In order to allow developers and researchers to explore the robustness of deep learning image recognition models deployed on different hardware acceleration devices, we propose MutateNN, a tool that provides mutation testing and analysis capabilities for that purpose. To showcase its capabilities, we utilized 21 mutations for 7 widely-known pre-trained deep neural network models. We deployed our mutants on 4 different devices of varying computational capabilities and observed discrepancies in mutants related to conditional operations, as well as some unstable behaviour with those related to arithmetic types.

Fully Homomorphic Encryption (FHE) is a cryptographic method that guarantees the privacy and security of user data during computation. FHE algorithms can perform unlimited arithmetic computations directly on encrypted data without decrypting it. Thus, even when processed by untrusted systems, confidential data is never exposed. In this work, we develop new techniques for accelerated encrypted execution and demonstrate the significant performance advantages of our approach. Our current focus is the Fully Homomorphic Encryption over the Torus (CGGI) scheme, which is a current state-of-the-art method for evaluating arbitrary functions in the encrypted domain. CGGI represents a computation as a graph of homomorphic logic gates and each individual bit of the plaintext is transformed into a polynomial in the encrypted domain. Arithmetic on such data becomes very expensive: operations on bits become operations on entire polynomials. Therefore, evaluating even relatively simple nonlinear functions, such as a sigmoid, can take thousands of seconds on a single CPU thread. Using our novel framework for end-to-end accelerated encrypted execution called ArctyrEX, developers with no knowledge of complex FHE libraries can simply describe their computation as a C program that is evaluated over $40\times$ faster on an NVIDIA DGX A100 and $6\times$ faster with a single A100 relative to a 256-threaded CPU baseline.

The Internet of Things is a paradigm that refers to the ubiquitous presence around us of physical objects equipped with sensing, networking, and processing capabilities that allow them to cooperate with their environment to reach common goals. However, any threat affecting the availability of IoT applications can be crucial financially and for the safety of the physical integrity of users. This feature calls for IoT applications that remain operational and efficiently handle possible threats. However, designing an IoT application that can handle threats is challenging for stakeholders due to the high susceptibility to threats of IoT applications and the lack of modeling mechanisms that contemplate resilience as a first-class representation. In this paper, an architectural Design Decision Model for Resilient IoT applications is presented to reduce the difficulty of stakeholders in designing resilient IoT applications. Our approach is illustrated and demonstrates the value through the modeling of a case.

In recent years, online social networks have been the target of adversaries who seek to introduce discord into societies, to undermine democracies and to destabilize communities. Often the goal is not to favor a certain side of a conflict but to increase disagreement and polarization. To get a mathematical understanding of such attacks, researchers use opinion-formation models from sociology, such as the Friedkin--Johnsen model, and formally study how much discord the adversary can produce when altering the opinions for only a small set of users. In this line of work, it is commonly assumed that the adversary has full knowledge about the network topology and the opinions of all users. However, the latter assumption is often unrealistic in practice, where user opinions are not available or simply difficult to estimate accurately. To address this concern, we raise the following question: Can an attacker sow discord in a social network, even when only the network topology is known? We answer this question affirmatively. We present approximation algorithms for detecting a small set of users who are highly influential for the disagreement and polarization in the network. We show that when the adversary radicalizes these users and if the initial disagreement/polarization in the network is not very high, then our method gives a constant-factor approximation on the setting when the user opinions are known. To find the set of influential users, we provide a novel approximation algorithm for a variant of MaxCut in graphs with positive and negative edge weights. We experimentally evaluate our methods, which have access only to the network topology, and we find that they have similar performance as methods that have access to the network topology and all user opinions. We further present an NP-hardness proof, which was an open question by Chen and Racz [IEEE Trans. Netw. Sci. Eng., 2021].

Trends in hardware, the prevalence of the cloud, and the rise of highly demanding applications have ushered an era of specialization that quickly changes how data is processed at scale. These changes are likely to continue and accelerate in the next years as new technologies are adopted and deployed: smart NICs, smart storage, smart memory, disaggregated storage, disaggregated memory, specialized accelerators (GPUS, TPUs, FPGAs), and a wealth of ASICs specifically created to deal with computationally expensive tasks (e.g., cryptography or compression). In this tutorial, we focus on data processing on FPGAs, a technology that has received less attention than, e.g., TPUs or GPUs but that is, however, increasingly being deployed in the cloud for data processing tasks due to the architectural flexibility of FPGAs, along with their ability to process data at line rate, something not possible with other types of processors or accelerators. In the tutorial, we will cover what FPGAs are, their characteristics, their advantages and disadvantages, as well as examples from deployments in the industry and how they are used in various data processing tasks. We will introduce FPGA programming with high-level languages and describe hardware and software resources available to researchers. The tutorial includes case studies borrowed from research done in collaboration with companies that illustrate the potential of FPGAs in data processing and how software and hardware are evolving to take advantage of the possibilities offered by FPGAs. The use cases include: (1) approximated nearest neighbor search, which is relevant to databases and machine learning, (2) remote disaggregated memory, showing how the cloud architecture is evolving and demonstrating the potential for operator offloading and line rate data processing, and (3) recommendation system as an application with tight latency constraints.

Simulation speed matters for neuroscientific research: this includes not only how quickly the simulated model time of a large-scale spiking neuronal network progresses, but also how long it takes to instantiate the network model in computer memory. On the hardware side, acceleration via highly parallel GPUs is being increasingly utilized. On the software side, code generation approaches ensure highly optimized code, at the expense of repeated code regeneration and recompilation after modifications to the network model. Aiming for a greater flexibility with respect to iterative model changes, here we propose a new method for creating network connections interactively, dynamically, and directly in GPU memory through a set of commonly used high-level connection rules. We validate the simulation performance with both consumer and data center GPUs on two neuroscientifically relevant models: a cortical microcircuit of about 77,000 leaky-integrate-and-fire neuron models and 300 million static synapses, and a two-population network recurrently connected using a variety of connection rules. With our proposed ad hoc network instantiation, both network construction and simulation times are comparable or shorter than those obtained with other state-of-the-art simulation technologies, while still meeting the flexibility demands of explorative network modeling.

With the increasing popularity of Internet of Things (IoT) devices, there is a growing need for energy-efficient Machine Learning (ML) models that can run on constrained edge nodes. Decision tree ensembles, such as Random Forests (RFs) and Gradient Boosting (GBTs), are particularly suited for this task, given their relatively low complexity compared to other alternatives. However, their inference time and energy costs are still significant for edge hardware. Given that said costs grow linearly with the ensemble size, this paper proposes the use of dynamic ensembles, that adjust the number of executed trees based both on a latency/energy target and on the complexity of the processed input, to trade-off computational cost and accuracy. We focus on deploying these algorithms on multi-core low-power IoT devices, designing a tool that automatically converts a Python ensemble into optimized C code, and exploring several optimizations that account for the available parallelism and memory hierarchy. We extensively benchmark both static and dynamic RFs and GBTs on three state-of-the-art IoT-relevant datasets, using an 8-core ultra-lowpower System-on-Chip (SoC), GAP8, as the target platform. Thanks to the proposed early-stopping mechanisms, we achieve an energy reduction of up to 37.9% with respect to static GBTs (8.82 uJ vs 14.20 uJ per inference) and 41.7% with respect to static RFs (2.86 uJ vs 4.90 uJ per inference), without losing accuracy compared to the static model.

In federated learning, each participant trains its local model with its own data and a global model is formed at a trusted server by aggregating model updates coming from these participants. Since the server has no effect and visibility on the training procedure of the participants to ensure privacy, the global model becomes vulnerable to attacks such as data poisoning and model poisoning. Although many defense algorithms have recently been proposed to address these attacks, they often make strong assumptions that do not agree with the nature of federated learning, such as assuming Non-IID datasets. Moreover, they mostly lack comprehensive experimental analyses. In this work, we propose a defense algorithm called ARFED that does not make any assumptions about data distribution, update similarity of participants, or the ratio of the malicious participants. ARFED mainly considers the outlier status of participant updates for each layer of the model architecture based on the distance to the global model. Hence, the participants that do not have any outlier layer are involved in model aggregation. We have performed extensive experiments on diverse scenarios and shown that the proposed approach provides a robust defense against different attacks. To test the defense capability of the ARFED in different conditions, we considered label flipping, Byzantine, and partial knowledge attacks for both IID and Non-IID settings in our experimental evaluations. Moreover, we proposed a new attack, called organized partial knowledge attack, where malicious participants use their training statistics collaboratively to define a common poisoned model. We have shown that organized partial knowledge attacks are more effective than independent attacks.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

北京阿比特科技有限公司