On the whole, the U.S. Algorithmic Accountability Act of 2022 (US AAA) is a pragmatic approach to balancing the benefits and risks of automated decision systems. Yet there is still room for improvement. This commentary highlights how the US AAA can both inform and learn from the European Artificial Intelligence Act (EU AIA).
Uncertainty Quantification in Machine Learning has progressed to predicting the source of uncertainty in a prediction: Uncertainty from stochasticity in the data (aleatoric), or uncertainty from limitations of the model (epistemic). Generally, each uncertainty is evaluated in isolation, but this obscures the fact that they are often not truly disentangled. This work proposes a set of experiments to evaluate disentanglement of aleatoric and epistemic uncertainty, and uses these methods to compare two competing formulations for disentanglement (the Information Theoretic approach, and the Gaussian Logits approach). The results suggest that the Information Theoretic approach gives better disentanglement, but that either predicted source of uncertainty is still largely contaminated by the other for both methods. We conclude that with the current methods for disentangling, aleatoric and epistemic uncertainty are not reliably separated, and we provide a clear set of experimental criteria that good uncertainty disentanglement should follow.
The ICP registration algorithm has been a preferred method for LiDAR-based robot localization for nearly a decade. However, even in modern SLAM solutions, ICP can degrade and become unreliable in geometrically ill-conditioned environments. Current solutions primarily focus on utilizing additional sources of information, such as external odometry, to either replace the degenerate directions of the optimization solution or add additional constraints in a sensor-fusion setup afterward. In response, this work investigates and compares new and existing degeneracy mitigation methods for robust LiDAR-based localization and analyzes the efficacy of these approaches in degenerate environments for the first time in the literature at this scale. Specifically, this work proposes and investigates i) the incorporation of different types of constraints into the ICP algorithm, ii) the effect of using active or passive degeneracy mitigation techniques, and iii) the choice of utilizing global point cloud registration methods on the ill-conditioned ICP problem in LiDAR degenerate environments. The study results are validated through multiple real-world field and simulated experiments. The analysis shows that active optimization degeneracy mitigation is necessary and advantageous in the absence of reliable external estimate assistance for LiDAR-SLAM. Furthermore, introducing degeneracy-aware hard constraints in the optimization before or during the optimization is shown to perform better in the wild than by including the constraints after. Moreover, with heuristic fine-tuned parameters, soft constraints can provide equal or better results in complex ill-conditioned scenarios. The implementations used in the analysis of this work are made publicly available to the community.
As Large Language Models (LLMs) perform (and sometimes excel at) more and more complex cognitive tasks, a natural question is whether AI really understands. The study of understanding in LLMs is in its infancy, and the community has yet to incorporate well-trodden research in philosophy, psychology, and education. We initiate this, specifically focusing on understanding algorithms, and propose a hierarchy of levels of understanding. We use the hierarchy to design and conduct a study with human subjects (undergraduate and graduate students) as well as large language models (generations of GPT), revealing interesting similarities and differences. We expect that our rigorous criteria will be useful to keep track of AI's progress in such cognitive domains.
Owing to their powerful semantic reasoning capabilities, Large Language Models (LLMs) have been effectively utilized as recommenders, achieving impressive performance. However, the high inference latency of LLMs significantly restricts their practical deployment. To address this issue, this work investigates knowledge distillation from cumbersome LLM-based recommendation models to lightweight conventional sequential models. It encounters three challenges: 1) the teacher's knowledge may not always be reliable; 2) the capacity gap between the teacher and student makes it difficult for the student to assimilate the teacher's knowledge; 3) divergence in semantic space poses a challenge to distill the knowledge from embeddings. To tackle these challenges, this work proposes a novel distillation strategy, DLLM2Rec, specifically tailored for knowledge distillation from LLM-based recommendation models to conventional sequential models. DLLM2Rec comprises: 1) Importance-aware ranking distillation, which filters reliable and student-friendly knowledge by weighting instances according to teacher confidence and student-teacher consistency; 2) Collaborative embedding distillation integrates knowledge from teacher embeddings with collaborative signals mined from the data. Extensive experiments demonstrate the effectiveness of the proposed DLLM2Rec, boosting three typical sequential models with an average improvement of 47.97%, even enabling them to surpass LLM-based recommenders in some cases.
Large Language Models (LLMs) have been adopted for a variety of visualizations tasks, but how far are we from perceptually aware LLMs that can predict human takeaways? Graphical perception literature has shown that human chart takeaways are sensitive to visualization design choices, such as spatial layouts. In this work, we examine the extent to which LLMs exhibit such sensitivity when generating takeaways, using bar charts with varying spatial layouts as a case study. We conducted three experiments and tested four common bar chart layouts: vertically juxtaposed, horizontally juxtaposed, overlaid, and stacked. In Experiment 1, we identified the optimal configurations to generate meaningful chart takeaways by testing four LLMs, two temperature settings, nine chart specifications, and two prompting strategies. We found that even state-of-the-art LLMs struggled to generate semantically diverse and factually accurate takeaways. In Experiment 2, we used the optimal configurations to generate 30 chart takeaways each for eight visualizations across four layouts and two datasets in both zero-shot and one-shot settings. Compared to human takeaways, we found that the takeaways LLMs generated often did not match the types of comparisons made by humans. In Experiment 3, we examined the effect of chart context and data on LLM takeaways. We found that LLMs, unlike humans, exhibited variation in takeaway comparison types for different bar charts using the same bar layout. Overall, our case study evaluates the ability of LLMs to emulate human interpretations of data and points to challenges and opportunities in using LLMs to predict human chart takeaways.
Black-box Large Language Models (LLMs) have shown great power in solving various tasks and are considered general problem solvers. However, LLMs still fail in many specific tasks although understand the task instruction. In this paper, we focus on the problem of boosting the ability of black-box LLMs to solve downstream tasks. We propose ExpNote, an automated framework to help LLMs better adapt to unfamiliar tasks through reflecting and noting experiences from training data and retrieving them from external memory during testing. We evaluate ExpNote on multiple tasks and the experimental results demonstrate that the proposed method significantly improves the performance of black-box LLMs. The data and code are available at //github.com/forangel2014/ExpNote
Large Language Models (LLMs) demonstrate an impressive capacity to recall a vast range of factual knowledge. However, understanding their underlying reasoning and internal mechanisms in exploiting this knowledge remains a key research area. This work unveils the factual information an LLM represents internally for sentence-level claim verification. We propose an end-to-end framework to decode factual knowledge embedded in token representations from a vector space to a set of ground predicates, showing its layer-wise evolution using a dynamic knowledge graph. Our framework employs activation patching, a vector-level technique that alters a token representation during inference, to extract encoded knowledge. Accordingly, we neither rely on training nor external models. Using factual and common-sense claims from two claim verification datasets, we showcase interpretability analyses at local and global levels. The local analysis highlights entity centrality in LLM reasoning, from claim-related information and multi-hop reasoning to representation errors causing erroneous evaluation. On the other hand, the global reveals trends in the underlying evolution, such as word-based knowledge evolving into claim-related facts. By interpreting semantics from LLM latent representations and enabling graph-related analyses, this work enhances the understanding of the factual knowledge resolution process.
Large Language Models (LLMs) have demonstrated impressive capabilities in natural language tasks, but their safety and morality remain contentious due to their training on internet text corpora. To address these concerns, alignment techniques have been developed to improve the public usability and safety of LLMs. Yet, the potential for generating harmful content through these models seems to persist. This paper explores the concept of jailbreaking LLMs-reversing their alignment through adversarial triggers. Previous methods, such as soft embedding prompts, manually crafted prompts, and gradient-based automatic prompts, have had limited success on black-box models due to their requirements for model access and for producing a low variety of manually crafted prompts, making them susceptible to being blocked. This paper introduces a novel approach using reinforcement learning to optimize adversarial triggers, requiring only inference API access to the target model and a small surrogate model. Our method, which leverages a BERTScore-based reward function, enhances the transferability and effectiveness of adversarial triggers on new black-box models. We demonstrate that this approach improves the performance of adversarial triggers on a previously untested language model.
Large-language models are notoriously famous for their impressive performance across a wide range of tasks. One surprising example of such impressive performance is a recently identified capacity of LLMs to understand the governing principles of dynamical systems satisfying the Markovian property. In this paper, we seek to explore this direction further by studying the dynamics of stochastic gradient descent in convex and non-convex optimization. By leveraging the theoretical link between the SGD and Markov chains, we show a remarkable zero-shot performance of LLMs in predicting the local minima to which SGD converges for previously unseen starting points. On a more general level, we inquire about the possibility of using LLMs to perform zero-shot randomized trials for larger deep learning models used in practice.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.