In counter-adversarial systems, to infer the strategy of an intelligent adversarial agent, the defender agent needs to cognitively sense the information that the adversary has gathered about the latter. Prior works on the problem employ linear Gaussian state-space models and solve this inverse cognition problem by designing inverse stochastic filters. However, in practice, counter-adversarial systems are generally highly nonlinear. In this paper, we address this scenario by formulating inverse cognition as a nonlinear Gaussian state-space model, wherein the adversary employs an unscented Kalman filter (UKF) to estimate the defender's state with reduced linearization errors. To estimate the adversary's estimate of the defender, we propose and develop an inverse UKF (IUKF) system. We then derive theoretical guarantees for the stochastic stability of IUKF in the mean-squared boundedness sense. Numerical experiments for multiple practical applications show that the estimation error of IUKF converges and closely follows the recursive Cram\'{e}r-Rao lower bound.
Combating an epidemic entails finding a plan that describes when and how to apply different interventions, such as mask-wearing mandates, vaccinations, school or workplace closures. An optimal plan will curb an epidemic with minimal loss of life, disease burden, and economic cost. Finding an optimal plan is an intractable computational problem in realistic settings. Policy-makers, however, would greatly benefit from tools that can efficiently search for plans that minimize disease and economic costs especially when considering multiple possible interventions over a continuous and complex action space given a continuous and equally complex state space. We formulate this problem as a Markov decision process. Our formulation is unique in its ability to represent multiple continuous interventions over any disease model defined by ordinary differential equations. We illustrate how to effectively apply state-of-the-art actor-critic reinforcement learning algorithms (PPO and SAC) to search for plans that minimize overall costs. We empirically evaluate the learning performance of these algorithms and compare their performance to hand-crafted baselines that mimic plans constructed by policy-makers. Our method outperforms baselines. Our work confirms the viability of a computational approach to support policy-makers
Citizen-focused democratic processes where participants deliberate on alternatives and then vote to make the final decision are increasingly popular today. While the computational social choice literature has extensively investigated voting rules, there is limited work that explicitly looks at the interplay of the deliberative process and voting. In this paper, we build a deliberation model using established models from the opinion-dynamics literature and study the effect of different deliberation mechanisms on voting outcomes achieved when using well-studied voting rules. Our results show that deliberation generally improves welfare and representation guarantees, but the results are sensitive to how the deliberation process is organized. We also show, experimentally, that simple voting rules, such as approval voting, perform as well as more sophisticated rules such as proportional approval voting or method of equal shares if deliberation is properly supported. This has ramifications on the practical use of such voting rules in citizen-focused democratic processes.
With the progress of 3D human pose and shape estimation, state-of-the-art methods can either be robust to occlusions or obtain pixel-aligned accuracy in non-occlusion cases. However, they cannot obtain robustness and mesh-image alignment at the same time. In this work, we present NIKI (Neural Inverse Kinematics with Invertible Neural Network), which models bi-directional errors to improve the robustness to occlusions and obtain pixel-aligned accuracy. NIKI can learn from both the forward and inverse processes with invertible networks. In the inverse process, the model separates the error from the plausible 3D pose manifold for a robust 3D human pose estimation. In the forward process, we enforce the zero-error boundary conditions to improve the sensitivity to reliable joint positions for better mesh-image alignment. Furthermore, NIKI emulates the analytical inverse kinematics algorithms with the twist-and-swing decomposition for better interpretability. Experiments on standard and occlusion-specific benchmarks demonstrate the effectiveness of NIKI, where we exhibit robust and well-aligned results simultaneously. Code is available at //github.com/Jeff-sjtu/NIKI
The Adaptive Large Neighborhood Search (ALNS) algorithm has shown considerable success in solving complex combinatorial optimization problems (COPs). ALNS selects various heuristics adaptively during the search process, leveraging their strengths to find good solutions for optimization problems. However, the effectiveness of ALNS depends on the proper configuration of its selection and acceptance parameters. To address this limitation, we propose a Deep Reinforcement Learning (DRL) approach that selects heuristics, adjusts parameters, and controls the acceptance criteria during the search process. The proposed method aims to learn, based on the state of the search, how to configure the next iteration of the ALNS to obtain good solutions to the underlying optimization problem. We evaluate the proposed method on a time-dependent orienteering problem with stochastic weights and time windows, used in an IJCAI competition. The results show that our approach outperforms vanilla ALNS and ALNS tuned with Bayesian Optimization. In addition, it obtained better solutions than two state-of-the-art DRL approaches, which are the winning methods of the competition, with much fewer observations required for training. The implementation of our approach will be made publicly available.
Traditionally, approximate dynamic programming is employed in dialogue generation with greedy policy improvement through action sampling, as the natural language action space is vast. However, this practice is inefficient for reinforcement learning (RL) due to the sparsity of eligible responses with high action values, which leads to weak improvement sustained by random sampling. This paper presents theoretical analysis and experiments that reveal the performance of the dialogue policy is positively correlated with the sampling size. To overcome this limitation, we introduce a novel dual-granularity Q-function that explores the most promising response category to intervene in the sampling process. Our approach extracts actions based on a grained hierarchy, thereby achieving the optimum with fewer policy iterations. Additionally, we use offline RL and learn from multiple reward functions designed to capture emotional nuances in human interactions. Empirical studies demonstrate that our algorithm outperforms baselines across automatic metrics and human evaluations. Further testing reveals that our algorithm exhibits both explainability and controllability and generates responses with higher expected rewards.
The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio-temporally, shows promise in quantifying and mitigating systematic model errors, the estimation of the spatio-temporally distributed model parameters has been practically challenging. Here we present an efficient and practical method to estimate time-varying parameters in high-dimensional spaces. In our proposed method, Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE-EnKF), model parameters estimated by EnKF are constrained by results of offline batch optimization, in which the posterior distribution of model parameters is obtained by comparing simulated and observed climatological variables. HOOPE-EnKF outperforms the original EnKF in a synthetic experiment using a two-scale Lorenz96 model. One advantage of HOOPE-EnKF over traditional EnKFs is that its performance is not greatly affected by inflation factors for model parameters, thus eliminating the need for extensive tuning of inflation factors. We thoroughly discuss the potential of HOOPE-EnKF as a practical method for improving parameterizations of process-based models and prediction in real-world applications such as numerical weather prediction.
Real-world data, such as administrative claims and electronic health records, are increasingly used for safety monitoring and to help guide regulatory decision-making. In these settings, it is important to document analytic decisions transparently and objectively to ensure that analyses meet their intended goals. The Causal Roadmap is an established framework that can guide and document analytic decisions through each step of the analytic pipeline, which will help investigators generate high-quality real-world evidence. In this paper, we illustrate the utility of the Causal Roadmap using two case studies previously led by workgroups sponsored by the Sentinel Initiative -- a program for actively monitoring the safety of regulated medical products. Each case example focuses on different aspects of the analytic pipeline for drug safety monitoring. The first case study shows how the Causal Roadmap encourages transparency, reproducibility, and objective decision-making for causal analyses. The second case study highlights how this framework can guide analytic decisions beyond inference on causal parameters, improving outcome ascertainment in clinical phenotyping. These examples provide a structured framework for implementing the Causal Roadmap in safety surveillance and guide transparent, reproducible, and objective analysis.
Recurrent neural networks are a powerful means to cope with time series. We show how autoregressive linear, i.e., linearly activated recurrent neural networks (LRNNs) can approximate any time-dependent function f(t) given by a number of function values. The approximation can effectively be learned by simply solving a linear equation system; no backpropagation or similar methods are needed. Furthermore, and this is probably the main contribution of this article, the size of an LRNN can be reduced significantly in one step after inspecting the spectrum of the network transition matrix, i.e., its eigenvalues, by taking only the most relevant components. Therefore, in contrast to other approaches, we do not only learn network weights but also the network architecture. LRNNs have interesting properties: They end up in ellipse trajectories in the long run and allow the prediction of further values and compact representations of functions. We demonstrate this by several experiments, among them multiple superimposed oscillators (MSO), robotic soccer, and predicting stock prices. LRNNs outperform the previous state-of-the-art for the MSO task with a minimal number of units.
Game theory has by now found numerous applications in various fields, including economics, industry, jurisprudence, and artificial intelligence, where each player only cares about its own interest in a noncooperative or cooperative manner, but without obvious malice to other players. However, in many practical applications, such as poker, chess, evader pursuing, drug interdiction, coast guard, cyber-security, and national defense, players often have apparently adversarial stances, that is, selfish actions of each player inevitably or intentionally inflict loss or wreak havoc on other players. Along this line, this paper provides a systematic survey on three main game models widely employed in adversarial games, i.e., zero-sum normal-form and extensive-form games, Stackelberg (security) games, zero-sum differential games, from an array of perspectives, including basic knowledge of game models, (approximate) equilibrium concepts, problem classifications, research frontiers, (approximate) optimal strategy seeking techniques, prevailing algorithms, and practical applications. Finally, promising future research directions are also discussed for relevant adversarial games.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.