Autonomous unmanned aerial vehicle (UAV) inertial navigation exhibits an extreme dependency on the availability of global navigation satellite systems (GNSS) signals, without which it incurs in a slow but unavoidable position drift that may ultimately lead to the loss of the platform if the GNSS signals are not restored or the aircraft does not reach a location from which it can be recovered by remote control. This article describes an stochastic high fidelity simulation of the flight of a fixed wing low SWaP (size, weight, and power) autonomous UAV in turbulent and varying weather intended to test and validate the GNSS-Denied performance of different navigation algorithms. Its open-source \nm{\CC} implementation has been released and is publicly available. Onboard sensors include accelerometers, gyroscopes, magnetometers, a Pitot tube, an air data system, a GNSS receiver, and a digital camera, so the simulation is valid for inertial, visual, and visual inertial navigation systems. Two scenarios involving the loss of GNSS signals are considered: the first represents the challenges involved in aborting the mission and heading towards a remote recovery location while experiencing varying weather, and the second models the continuation of the mission based on a series of closely spaced bearing changes. All simulation modules have been modeled with as few simplifications as possible to increase the realism of the results. While the implementation of the aircraft performances and its control system is deterministic, that of all other modules, including the mission, sensors, weather, wind, turbulence, and initial estimations, is fully stochastic. This enables a robust evaluation of each proposed navigation system by means of Monte-Carlo simulations that rely on a high number of executions of both scenarios.
Numerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. Variational integrators are an important class of geometric integrators. The general idea for those variational integrators is to discretize Hamilton's principle rather than the equations of motion in a way that preserves some of the invariants of the original system. In this paper we construct variational integrators with fixed time step for time-dependent Lagrangian systems modelling an important class of autonomous dissipative systems. These integrators are derived via a family of discrete Lagrangian functions each one for a fixed time-step. This allows to recover at each step on the set of discrete sequences the preservation properties of variational integrators for autonomous Lagrangian systems, such as symplecticity or backward error analysis for these systems. We also present a discrete Noether theorem for this class of systems. Applications of the results are shown for the problem of formation stabilization of multi-agent systems.
Brockett's necessary condition yields a test to determine whether a system can be made to stabilize about some operating point via continuous, purely state-dependent feedback. For many real-world systems, however, one wants to stabilize sets which are more general than a single point. One also wants to control such systems to operate safely by making obstacles and other "dangerous" sets repelling. We generalize Brockett's necessary condition to the case of stabilizing general compact subsets having a nonzero Euler characteristic in general ambient state spaces (smooth manifolds). Using this generalization, we also formulate a necessary condition for the existence of "safe" control laws. We illustrate the theory in concrete examples and for some general classes of systems including a broad class of nonholonomically constrained Lagrangian systems. We also show that, for the special case of stabilizing a point, the specialization of our general stabilizability test is stronger than Brockett's.
We present the design and implementation of a taskable reactive mobile manipulation system. In contrary to related work, we treat the arm and base degrees of freedom as a holistic structure which greatly improves the speed and fluidity of the resulting motion. At the core of this approach is a robust and reactive motion controller which can achieve a desired end-effector pose, while avoiding joint position and velocity limits, and ensuring the mobile manipulator is manoeuvrable throughout the trajectory. This can support sensor-based behaviours such as closed-loop visual grasping. As no planning is involved in our approach, the robot is never stationary thinking about what to do next. We show the versatility of our holistic motion controller by implementing a pick and place system using behaviour trees and demonstrate this task on a 9-degree-of-freedom mobile manipulator. Additionally, we provide an open-source implementation of our motion controller for both non-holonomic and omnidirectional mobile manipulators available at jhavl.github.io/holistic.
Environments with multi-agent interactions often result a rich set of modalities of behavior between agents due to the inherent suboptimality of decision making processes when agents settle for satisfactory decisions. However, existing algorithms for solving these dynamic games are strictly unimodal and fail to capture the intricate multimodal behaviors of the agents. In this paper, we propose MMELQGames (Multimodal Maximum-Entropy Linear Quadratic Games), a novel constrained multimodal maximum entropy formulation of the Differential Dynamic Programming algorithm for solving generalized Nash equilibria. By formulating the problem as a certain dynamic game with incomplete and asymmetric information where agents are uncertain about the cost and dynamics of the game itself, the proposed method is able to reason about multiple local generalized Nash equilibria, enforce constraints with the Augmented Lagrangian framework and also perform Bayesian inference on the latent mode from past observations. We assess the efficacy of the proposed algorithm on two illustrative examples: multi-agent collision avoidance and autonomous racing. In particular, we show that only MMELQGames is able to effectively block a rear vehicle when given a speed disadvantage and the rear vehicle can overtake from multiple positions.
We propose and explore a new, general-purpose method for the implicit time integration of elastica. Key to our approach is the use of a mixed variational principle. In turn its finite element discretization leads to an efficient alternating projections solver with a superset of the desirable properties of many previous fast solution strategies. This framework fits a range of elastic constitutive models and remains stable across a wide span of timestep sizes, material parameters (including problems that are quasi-static and approximately rigid). It is efficient to evaluate and easily applicable to volume, surface, and rods models. We demonstrate the efficacy of our approach on a number of simulated examples across all three codomains.
Building autonomous vehicles (AVs) is a complex problem, but enabling them to operate in the real world where they will be surrounded by human-driven vehicles (HVs) is extremely challenging. Prior works have shown the possibilities of creating inter-agent cooperation between a group of AVs that follow a social utility. Such altruistic AVs can form alliances and affect the behavior of HVs to achieve socially desirable outcomes. We identify two major challenges in the co-existence of AVs and HVs. First, social preferences and individual traits of a given human driver, e.g., selflessness and aggressiveness are unknown to an AV, and it is almost impossible to infer them in real-time during a short AV-HV interaction. Second, contrary to AVs that are expected to follow a policy, HVs do not necessarily follow a stationary policy and therefore are extremely hard to predict. To alleviate the above-mentioned challenges, we formulate the mixed-autonomy problem as a multi-agent reinforcement learning (MARL) problem and propose a decentralized framework and reward function for training cooperative AVs. Our approach enables AVs to learn the decision-making of HVs implicitly from experience, optimizes for a social utility while prioritizing safety and allowing adaptability; robustifying altruistic AVs to different human behaviors and constraining them to a safe action space. Finally, we investigate the robustness, safety and sensitivity of AVs to various HVs behavioral traits and present the settings in which the AVs can learn cooperative policies that are adaptable to different situations.
Navigating a large-scaled robot in unknown and cluttered height-constrained environments is challenging. Not only is a fast and reliable planning algorithm required to go around obstacles, the robot should also be able to change its intrinsic dimension by crouching in order to travel underneath height-constrained regions. There are few mobile robots that are capable of handling such a challenge, and bipedal robots provide a solution. However, as bipedal robots have nonlinear and hybrid dynamics, trajectory planning while ensuring dynamic feasibility and safety on these robots is challenging. This paper presents an end-to-end vision-aided autonomous navigation framework which leverages three layers of planners and a variable walking height controller to enable bipedal robots to safely explore height-constrained environments. A vertically-actuated Spring-Loaded Inverted Pendulum (vSLIP) model is introduced to capture the robot's coupled dynamics of planar walking and vertical walking height. This reduced-order model is utilized to optimize for long-term and short-term safe trajectory plans. A variable walking height controller is leveraged to enable the bipedal robot to maintain stable periodic walking gaits while following the planned trajectory. The entire framework is tested and experimentally validated using a bipedal robot Cassie. This demonstrates reliable autonomy to drive the robot to safely avoid obstacles while walking to the goal location in various kinds of height-constrained cluttered environments.
We present R-LINS, a lightweight robocentric lidar-inertial state estimator, which estimates robot ego-motion using a 6-axis IMU and a 3D lidar in a tightly-coupled scheme. To achieve robustness and computational efficiency even in challenging environments, an iterated error-state Kalman filter (ESKF) is designed, which recursively corrects the state via repeatedly generating new corresponding feature pairs. Moreover, a novel robocentric formulation is adopted in which we reformulate the state estimator concerning a moving local frame, rather than a fixed global frame as in the standard world-centric lidar-inertial odometry(LIO), in order to prevent filter divergence and lower computational cost. To validate generalizability and long-time practicability, extensive experiments are performed in indoor and outdoor scenarios. The results indicate that R-LINS outperforms lidar-only and loosely-coupled algorithms, and achieve competitive performance as the state-of-the-art LIO with close to an order-of-magnitude improvement in terms of speed.
We present FAST NAVIGATOR, a general framework for action decoding, which yields state-of-the-art results on the recent Room-to-Room (R2R) Vision-and-Language navigation challenge of Anderson et. al. (2018). Given a natural language instruction and photo-realistic image views of a previously unseen environment, the agent must navigate from a source to a target location as quickly as possible. While all of current approaches make local action decisions or score entire trajectories with beam search, our framework seamlessly balances local and global signals when exploring the environment. Importantly, this allows us to act greedily, but use global signals to backtrack when necessary. Our FAST framework, applied to existing models, yielded a 17% relative gain over the previous state-of-the-art, an absolute 6% gain on success rate weighted by path length (SPL).
We present a traffic simulation named DeepTraffic where the planning systems for a subset of the vehicles are handled by a neural network as part of a model-free, off-policy reinforcement learning process. The primary goal of DeepTraffic is to make the hands-on study of deep reinforcement learning accessible to thousands of students, educators, and researchers in order to inspire and fuel the exploration and evaluation of deep Q-learning network variants and hyperparameter configurations through large-scale, open competition. This paper investigates the crowd-sourced hyperparameter tuning of the policy network that resulted from the first iteration of the DeepTraffic competition where thousands of participants actively searched through the hyperparameter space.