亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Prompt engineering is a powerful tool used to enhance the performance of pre-trained models on downstream tasks. For example, providing the prompt "Let's think step by step" improved GPT-3's reasoning accuracy to 63% on MutiArith while prompting "a photo of" filled with a class name enables CLIP to achieve $80$\% zero-shot accuracy on ImageNet. While previous research has explored prompt learning for the visual modality, analyzing what constitutes a good visual prompt specifically for image recognition is limited. In addition, existing visual prompt tuning methods' generalization ability is worse than text-only prompting tuning. This paper explores our key insight: synthetic text images are good visual prompts for vision-language models! To achieve that, we propose our LoGoPrompt, which reformulates the classification objective to the visual prompt selection and addresses the chicken-and-egg challenge of first adding synthetic text images as class-wise visual prompts or predicting the class first. Without any trainable visual prompt parameters, experimental results on 16 datasets demonstrate that our method consistently outperforms state-of-the-art methods in few-shot learning, base-to-new generalization, and domain generalization.

相關內容

Image captioning studies heavily rely on automatic evaluation metrics such as BLEU and METEOR. However, such n-gram-based metrics have been shown to correlate poorly with human evaluation, leading to the proposal of alternative metrics such as SPICE for English; however, no equivalent metrics have been established for other languages. Therefore, in this study, we propose an automatic evaluation metric called JaSPICE, which evaluates Japanese captions based on scene graphs. The proposed method generates a scene graph from dependencies and the predicate-argument structure, and extends the graph using synonyms. We conducted experiments employing 10 image captioning models trained on STAIR Captions and PFN-PIC and constructed the Shichimi dataset, which contains 103,170 human evaluations. The results showed that our metric outperformed the baseline metrics for the correlation coefficient with the human evaluation.

Latent diffusion models have proven to be state-of-the-art in the creation and manipulation of visual outputs. However, as far as we know, the generation of depth maps jointly with RGB is still limited. We introduce LDM3D-VR, a suite of diffusion models targeting virtual reality development that includes LDM3D-pano and LDM3D-SR. These models enable the generation of panoramic RGBD based on textual prompts and the upscaling of low-resolution inputs to high-resolution RGBD, respectively. Our models are fine-tuned from existing pretrained models on datasets containing panoramic/high-resolution RGB images, depth maps and captions. Both models are evaluated in comparison to existing related methods.

This paper presents RadOnc-GPT, a large language model specialized for radiation oncology through advanced tuning methods. RadOnc-GPT was finetuned on a large dataset of radiation oncology patient records from the Mayo Clinic in Arizona. The model employs instruction tuning on three key tasks - generating radiotherapy treatment regimens, determining optimal radiation modalities, and providing diagnostic descriptions/ICD codes based on patient diagnostic details. Evaluations conducted by comparing RadOnc-GPT outputs to general large language model outputs showed higher ROUGE scores in these three tasks. The study demonstrated the potential of using large language models fine-tuned using domain-specific knowledge like RadOnc-GPT to achieve transformational capabilities in highly specialized healthcare fields such as radiation oncology. However, our model's clinical relevance requires confirmation, and it specializes in only the aforementioned three specific tasks and lacks broader applicability. Furthermore, its evaluation through ROUGE scores might not reflect the true semantic and clinical accuracy - challenges we intend to address in future research.

In the field of reinforcement learning (RL), representation learning is a proven tool for complex image-based tasks, but is often overlooked for environments with low-level states, such as physical control problems. This paper introduces SALE, a novel approach for learning embeddings that model the nuanced interaction between state and action, enabling effective representation learning from low-level states. We extensively study the design space of these embeddings and highlight important design considerations. We integrate SALE and an adaptation of checkpoints for RL into TD3 to form the TD7 algorithm, which significantly outperforms existing continuous control algorithms. On OpenAI gym benchmark tasks, TD7 has an average performance gain of 276.7% and 50.7% over TD3 at 300k and 5M time steps, respectively, and works in both the online and offline settings.

Score-based diffusion models (SBDM) have recently emerged as state-of-the-art approaches for image generation. Existing SBDMs are typically formulated in a finite-dimensional setting, where images are considered as tensors of finite size. This paper develops SBDMs in the infinite-dimensional setting, that is, we model the training data as functions supported on a rectangular domain. Besides the quest for generating images at ever higher resolution, our primary motivation is to create a well-posed infinite-dimensional learning problem so that we can discretize it consistently on multiple resolution levels. We thereby intend to obtain diffusion models that generalize across different resolution levels and improve the efficiency of the training process. We demonstrate how to overcome two shortcomings of current SBDM approaches in the infinite-dimensional setting. First, we modify the forward process to ensure that the latent distribution is well-defined in the infinite-dimensional setting using the notion of trace class operators. We derive the reverse processes for finite approximations. Second, we illustrate that approximating the score function with an operator network is beneficial for multilevel training. After deriving the convergence of the discretization and the approximation of multilevel training, we implement an infinite-dimensional SBDM approach and show the first promising results on MNIST and Fashion-MNIST, underlining our developed theory.

Diffusion Models (DMs) are state-of-the-art generative models that learn a reversible corruption process from iterative noise addition and denoising. They are the backbone of many generative AI applications, such as text-to-image conditional generation. However, recent studies have shown that basic unconditional DMs (e.g., DDPM and DDIM) are vulnerable to backdoor injection, a type of output manipulation attack triggered by a maliciously embedded pattern at model input. This paper presents a unified backdoor attack framework (VillanDiffusion) to expand the current scope of backdoor analysis for DMs. Our framework covers mainstream unconditional and conditional DMs (denoising-based and score-based) and various training-free samplers for holistic evaluations. Experiments show that our unified framework facilitates the backdoor analysis of different DM configurations and provides new insights into caption-based backdoor attacks on DMs. Our code is available on GitHub: \url{//github.com/IBM/villandiffusion}

Linear Recurrence has proven to be a powerful tool for modeling long sequences efficiently. In this work, we show that existing models fail to take full advantage of its potential. Motivated by this finding, we develop GateLoop, a foundational sequence model that generalizes linear recurrent models such as S4, S5, LRU and RetNet, by employing data-controlled state transitions. Utilizing this theoretical advance, GateLoop empirically outperforms existing models for auto-regressive language modeling. Our method comes with a low-cost $O(l)$ recurrent mode and an efficient $O(l \log_{2} l)$ parallel mode making use of highly optimized associative scan implementations. Furthermore, we derive an $O(l^2)$ surrogate attention mode, revealing remarkable implications for Transformer and recently proposed architectures. Specifically, we prove that our approach can be interpreted as providing data-controlled relative-positional information to Attention. While many existing models solely rely on data-controlled cumulative sums for context aggregation, our findings suggest that incorporating data-controlled complex cumulative products may be a crucial step towards more powerful sequence models.

Machine learning techniques have outperformed numerous rule-based methods for decision-making in autonomous vehicles. Despite recent efforts, lane changing remains a major challenge, due to the complex driving scenarios and changeable social behaviors of surrounding vehicles. To help improve the state of the art, we propose to leveraging the emerging \underline{D}eep \underline{R}einforcement learning (DRL) approach for la\underline{NE} changing at the \underline{T}actical level. To this end, we present "DRNet", a novel and highly efficient DRL-based framework that enables a DRL agent to learn to drive by executing reasonable lane changing on simulated highways with an arbitrary number of lanes, and considering driving style of surrounding vehicles to make better decisions. Furthermore, to achieve a safe policy for decision-making, DRNet incorporates ideas from safety verification, the most important component of autonomous driving, to ensure that only safe actions are chosen at any time. The setting of our state representation and reward function enables the trained agent to take appropriate actions in a real-world-like simulator. Our DRL agent has the ability to learn the desired task without causing collisions and outperforms DDQN and other baseline models.

We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

北京阿比特科技有限公司