亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Perception that involves multi-object detection and tracking, and trajectory prediction are two major tasks of autonomous driving. However, they are currently mostly studied separately, which results in most trajectory prediction modules being developed based on ground truth trajectories without taking into account that trajectories extracted from the detection and tracking modules in real-world scenarios are noisy. These noisy trajectories can have a significant impact on the performance of the trajectory predictor and can lead to serious prediction errors. In this paper, we build an end-to-end framework for detection, tracking, and trajectory prediction called ODTP (Online Detection, Tracking and Prediction). It adopts the state-of-the-art online multi-object tracking model, QD-3DT, for perception and trains the trajectory predictor, DCENet++, directly based on the detection results without purely relying on ground truth trajectories. We evaluate the performance of ODTP on the widely used nuScenes dataset for autonomous driving. Extensive experiments show that ODPT achieves high performance end-to-end trajectory prediction. DCENet++, with the enhanced dynamic maps, predicts more accurate trajectories than its base model. It is also more robust when compared with other generative and deterministic trajectory prediction models trained on noisy detection results.

相關內容

We propose a novel methodology for robotic follow-ahead applications that address the critical challenge of obstacle and occlusion avoidance. Our approach effectively navigates the robot while ensuring avoidance of collisions and occlusions caused by surrounding objects. To achieve this, we developed a high-level decision-making algorithm that generates short-term navigational goals for the mobile robot. Monte Carlo Tree Search is integrated with a Deep Reinforcement Learning method to enhance the performance of the decision-making process and generate more reliable navigational goals. Through extensive experimentation and analysis, we demonstrate the effectiveness and superiority of our proposed approach in comparison to the existing follow-ahead human-following robotic methods. Our code is available at //github.com/saharLeisiazar/follow-ahead-ros.

We study a class of scheduling problems, where each job is divided into a batch of unit-size tasks and these tasks can be executed in parallel on multiple servers with New-Better-than-Used (NBU) service time distributions. While many delay optimality results are available for single-server queueing systems, generalizing these results to the multi-server case has been challenging. This motivated us to investigate near delay-optimal scheduling of batch jobs in multi-server queueing systems. We consider three lowcomplexity scheduling policies: the Fewest Unassigned Tasks first (FUT) policy, the Earliest Due Date first (EDD) policy, and the First-Come, First-Served (FCFS) policy. We prove that for arbitrary number, batch sizes, arrival times, and due times of the jobs, these scheduling policies are near delay-optimal in stochastic ordering for minimizing three classes of delay metrics among all causal and non-preemptive policies. In particular, the FUT policy is within a constant additive delay gap from the optimum for minimizing the mean average delay, and the FCFS policy within twice of the optimum for minimizing the mean maximum delay and the mean p-norm of delay. The key proof tools are several novel samplepath orderings, which can be used to compare the sample-path delay of different policies in a near-optimal sense.

In an era where scientific experimentation is often costly, multi-fidelity emulation provides a powerful tool for predictive scientific computing. While there has been notable work on multi-fidelity modeling, existing models do not incorporate an important "conglomerate" property of multi-fidelity simulators, where the accuracies of different simulator components are controlled by different fidelity parameters. Such conglomerate simulators are widely encountered in complex nuclear physics and astrophysics applications. We thus propose a new CONglomerate multi-FIdelity Gaussian process (CONFIG) model, which embeds this conglomerate structure within a novel non-stationary covariance function. We show that the proposed CONFIG model can capture prior knowledge on the numerical convergence of conglomerate simulators, which allows for cost-efficient emulation of multi-fidelity systems. We demonstrate the improved predictive performance of CONFIG over state-of-the-art models in a suite of numerical experiments and two applications, the first for emulation of cantilever beam deflection and the second for emulating the evolution of the quark-gluon plasma, which was theorized to have filled the Universe shortly after the Big Bang.

Dense depth and surface normal predictors should possess the equivariant property to cropping-and-resizing -- cropping the input image should result in cropping the same output image. However, we find that state-of-the-art depth and normal predictors, despite having strong performances, surprisingly do not respect equivariance. The problem exists even when crop-and-resize data augmentation is employed during training. To remedy this, we propose an equivariant regularization technique, consisting of an averaging procedure and a self-consistency loss, to explicitly promote cropping-and-resizing equivariance in depth and normal networks. Our approach can be applied to both CNN and Transformer architectures, does not incur extra cost during testing, and notably improves the supervised and semi-supervised learning performance of dense predictors on Taskonomy tasks. Finally, finetuning with our loss on unlabeled images improves not only equivariance but also accuracy of state-of-the-art depth and normal predictors when evaluated on NYU-v2. GitHub link: //github.com/mikuhatsune/equivariance

We introduce RotateIt, a system that enables fingertip-based object rotation along multiple axes by leveraging multimodal sensory inputs. Our system is trained in simulation, where it has access to ground-truth object shapes and physical properties. Then we distill it to operate on realistic yet noisy simulated visuotactile and proprioceptive sensory inputs. These multimodal inputs are fused via a visuotactile transformer, enabling online inference of object shapes and physical properties during deployment. We show significant performance improvements over prior methods and the importance of visual and tactile sensing.

External and internal convertible (EIC) form-based motion control (i.e., EIC-based control) is one of the effective approaches for underactuated balance robots. By sequentially controller design, trajectory tracking of the actuated subsystem and balance of the unactuated subsystem can be achieved simultaneously. However, with certain conditions, there exists uncontrolled robot motion under the EIC-based control. We first identify these conditions and then propose an enhanced EIC-based control with a Gaussian process data-driven robot dynamic model. Under the new enhanced EIC-based control, the stability and performance of the closed-loop system is guaranteed. We demonstrate the GP-enhanced EIC-based control experimentally using two examples of underactuated balance robots.

We present a novel objective function for cluster-based self-supervised learning (SSL) that is designed to circumvent the triad of failure modes, namely representation collapse, cluster collapse, and the problem of invariance to permutations of cluster assignments. This objective consists of three key components: (i) A generative term that penalizes representation collapse, (ii) a term that promotes invariance to data augmentations, thereby addressing the issue of label permutations and (ii) a uniformity term that penalizes cluster collapse. Additionally, our proposed objective possesses two notable advantages. Firstly, it can be interpreted from a Bayesian perspective as a lower bound on the data log-likelihood. Secondly, it enables the training of a standard backbone architecture without the need for asymmetric elements like stop gradients, momentum encoders, or specialized clustering layers. Due to its simplicity and theoretical foundation, our proposed objective is well-suited for optimization. Experiments on both toy and real world data demonstrate its effectiveness

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司