We consider the Ensemble Kalman Inversion which has been recently introduced as an efficient, gradient-free optimisation method to estimate unknown parameters in an inverse setting. In the case of large data sets, the Ensemble Kalman Inversion becomes computationally infeasible as the data misfit needs to be evaluated for each particle in each iteration. Here, randomised algorithms like stochastic gradient descent have been demonstrated to successfully overcome this issue by using only a random subset of the data in each iteration, so-called subsampling techniques. Based on a recent analysis of a continuous-time representation of stochastic gradient methods, we propose, analyse, and apply subsampling-techniques within Ensemble Kalman Inversion. Indeed, we propose two different subsampling techniques: either every particle observes the same data subset (single subsampling) or every particle observes a different data subset (batch subsampling).
Although continuous advances in theoretical modelling of Molecular Communications (MC) are observed, there is still an insuperable gap between theory and experimental testbeds, especially at the microscale. In this paper, the development of the first testbed incorporating engineered yeast cells is reported. Different from the existing literature, eukaryotic yeast cells are considered for both the sender and the receiver, with {\alpha}-factor molecules facilitating the information transfer. The use of such cells is motivated mainly by the well understood biological mechanism of yeast mating, together with their genetic amenability. In addition, recent advances in yeast biosensing establish yeast as a suitable detector and a neat interface to in-body sensor networks. The system under consideration is presented first, and the mathematical models of the underlying biological processes leading to an end-to-end (E2E) system are given. The experimental setup is then described and used to obtain experimental results which validate the developed mathematical models. Beyond that, the ability of the system to effectively generate output pulses in response to repeated stimuli is demonstrated, reporting one event per two hours. However, fast RNA fluctuations indicate cell responses in less than three minutes, demonstrating the potential for much higher rates in the future.
Efforts in the recommendation community are shifting from the sole emphasis on utility to considering beyond-utility factors, such as fairness and robustness. Robustness of recommendation models is typically linked to their ability to maintain the original utility when subjected to attacks. Limited research has explored the robustness of a recommendation model in terms of fairness, e.g., the parity in performance across groups, under attack scenarios. In this paper, we aim to assess the robustness of graph-based recommender systems concerning fairness, when exposed to attacks based on edge-level perturbations. To this end, we considered four different fairness operationalizations, including both consumer and provider perspectives. Experiments on three datasets shed light on the impact of perturbations on the targeted fairness notion, uncovering key shortcomings in existing evaluation protocols for robustness. As an example, we observed perturbations affect consumer fairness on a higher extent than provider fairness, with alarming unfairness for the former. Source code: //github.com/jackmedda/CPFairRobust
We study the problem of sequential prediction in the stochastic setting with an adversary that is allowed to inject clean-label adversarial (or out-of-distribution) examples. Algorithms designed to handle purely stochastic data tend to fail in the presence of such adversarial examples, often leading to erroneous predictions. This is undesirable in many high-stakes applications such as medical recommendations, where abstaining from predictions on adversarial examples is preferable to misclassification. On the other hand, assuming fully adversarial data leads to very pessimistic bounds that are often vacuous in practice. To capture this motivation, we propose a new model of sequential prediction that sits between the purely stochastic and fully adversarial settings by allowing the learner to abstain from making a prediction at no cost on adversarial examples. Assuming access to the marginal distribution on the non-adversarial examples, we design a learner whose error scales with the VC dimension (mirroring the stochastic setting) of the hypothesis class, as opposed to the Littlestone dimension which characterizes the fully adversarial setting. Furthermore, we design a learner for VC dimension~1 classes, which works even in the absence of access to the marginal distribution. Our key technical contribution is a novel measure for quantifying uncertainty for learning VC classes, which may be of independent interest.
In proof-theoretic semantics, meaning is based on inference. It may seen as the mathematical expression of the inferentialist interpretation of logic. Much recent work has focused on base-extension semantics, in which the validity of formulas is given by an inductive definition generated by provability in a `base' of atomic rules. Base-extension semantics for classical and intuitionistic propositional logic have been explored by several authors. In this paper, we develop base-extension semantics for the classical propositional modal systems K, KT , K4, and S4, with $\square$ as the primary modal operator. We establish appropriate soundness and completeness theorems and establish the duality between $\square$ and a natural presentation of $\lozenge$. We also show that our semantics is in its current form not complete with respect to euclidean modal logics. Our formulation makes essential use of relational structures on bases.
We show, using three empirical applications, that linear regression estimates which rely on the assumption of sparsity are fragile in two ways. First, we document that different choices of the regressor matrix that do not impact ordinary least squares (OLS) estimates, such as the choice of baseline category with categorical controls, can move sparsity-based estimates two standard errors or more. Second, we develop two tests of the sparsity assumption based on comparing sparsity-based estimators with OLS. The tests tend to reject the sparsity assumption in all three applications. Unless the number of regressors is comparable to or exceeds the sample size, OLS yields more robust results at little efficiency cost.
Following White's approach of robust multiple linear regression, we give asymptotic confidence intervals for the multiple correlation coefficient R2 under minimal moment conditions. We also give the asymptotic joint distribution of the empirical estimators of the individual R2's. Through different sets of simulations, we show that the procedure is indeed robust (contrary to the procedure involving the near exact distribution of the empirical estimator of R2 is the multivariate Gaussian case) and can be also applied to count linear regression.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.