Artificial intelligence is gaining traction in more ways than ever before. The popularity of language models and AI-based businesses has soared since ChatGPT was made available to the general public via OpenAI. It is becoming increasingly common for people to use ChatGPT both professionally and personally. Considering the widespread use of ChatGPT and the reliance people place on it, this study determined how reliable ChatGPT can be for answering complex medical and clinical questions. Harvard University gross anatomy along with the United States Medical Licensing Examination (USMLE) questionnaire were used to accomplish the objective. The paper evaluated the obtained results using a 2-way ANOVA and posthoc analysis. Both showed systematic covariation between format and prompt. Furthermore, the physician adjudicators independently rated the outcome's accuracy, concordance, and insight. As a result of the analysis, ChatGPT-generated answers were found to be more context-oriented and represented a better model for deductive reasoning than regular Google search results. Furthermore, ChatGPT obtained 58.8% on logical questions and 60% on ethical questions. This means that the ChatGPT is approaching the passing range for logical questions and has crossed the threshold for ethical questions. The paper believes ChatGPT and other language learning models can be invaluable tools for e-learners; however, the study suggests that there is still room to improve their accuracy. In order to improve ChatGPT's performance in the future, further research is needed to better understand how it can answer different types of questions.
In policy learning for robotic manipulation, sample efficiency is of paramount importance. Thus, learning and extracting more compact representations from camera observations is a promising avenue. However, current methods often assume full observability of the scene and struggle with scale invariance. In many tasks and settings, this assumption does not hold as objects in the scene are often occluded or lie outside the field of view of the camera, rendering the camera observation ambiguous with regard to their location. To tackle this problem, we present BASK, a Bayesian approach to tracking scale-invariant keypoints over time. Our approach successfully resolves inherent ambiguities in images, enabling keypoint tracking on symmetrical objects and occluded and out-of-view objects. We employ our method to learn challenging multi-object robot manipulation tasks from wrist camera observations and demonstrate superior utility for policy learning compared to other representation learning techniques. Furthermore, we show outstanding robustness towards disturbances such as clutter, occlusions, and noisy depth measurements, as well as generalization to unseen objects both in simulation and real-world robotic experiments.
Artificial intelligence (AI) has been advancing at a fast pace and it is now poised for deployment in a wide range of applications, such as autonomous systems, medical diagnosis and natural language processing. Early adoption of AI technology for real-world applications has not been without problems, particularly for neural networks, which may be unstable and susceptible to adversarial examples. In the longer term, appropriate safety assurance techniques need to be developed to reduce potential harm due to avoidable system failures and ensure trustworthiness. Focusing on certification and explainability, this paper provides an overview of techniques that have been developed to ensure safety of AI decisions and discusses future challenges.
Large language models (LLMs) have made significant strides in various tasks, yet they often struggle with complex reasoning and exhibit poor performance in scenarios where knowledge traceability, timeliness, and accuracy are crucial. To address these limitations, we present Think-on-Graph (ToG), a novel framework that leverages knowledge graphs to enhance LLMs' ability for deep and responsible reasoning. By employing ToG, we can identify entities relevant to a given question and conduct exploration and reasoning to retrieve related triples from an external knowledge database. This iterative procedure generates multiple reasoning pathways consisting of sequentially connected triplets until sufficient information is gathered to answer the question or the maximum depth is reached. Through experiments on complex multi-hop reasoning question-answering tasks, we demonstrate that ToG outperforms existing methods, effectively addressing the aforementioned limitations of LLMs without incurring additional training costs.
Large language models (LLMs) have the potential to transform our lives and work through the content they generate, known as AI-Generated Content (AIGC). To harness this transformation, we need to understand the limitations of LLMs. Here, we investigate the bias of AIGC produced by seven representative LLMs, including ChatGPT and LLaMA. We collect news articles from The New York Times and Reuters, both known for delivering relatively unbiased news. We then apply each examined LLM to generate news content with headlines of these news articles as prompts, and evaluate the gender and racial biases of the AIGC produced by the LLM by comparing the AIGC and the original news articles. We further analyze the gender bias of each LLM under biased prompts by adding gender-biased messages to prompts constructed from these news headlines. Our study reveals that the AIGC produced by each examined LLM demonstrates substantial gender and racial biases. Moreover, the AIGC generated by each LLM exhibits notable discrimination against females and individuals of the Black race. Among the LLMs, the AIGC generated by ChatGPT demonstrates the lowest level of bias, and ChatGPT is the sole model capable of declining content generation when provided with biased prompts.
Existing propositions often rely on logical constants for classification. Compared with Western languages that lean towards hypotaxis such as English, Chinese often relies on semantic or logical understanding rather than logical connectives in daily expressions, exhibiting the characteristics of parataxis. However, existing research has rarely paid attention to this issue. And accurately classifying these propositions is crucial for natural language understanding and reasoning. In this paper, we put forward the concepts of explicit and implicit propositions and propose a comprehensive multi-level proposition classification system based on linguistics and logic. Correspondingly, we create a large-scale Chinese proposition dataset PEACE from multiple domains, covering all categories related to propositions. To evaluate the Chinese proposition classification ability of existing models and explore their limitations, We conduct evaluations on PEACE using several different methods including the Rule-based method, SVM, BERT, RoBERTA, and ChatGPT. Results show the importance of properly modeling the semantic features of propositions. BERT has relatively good proposition classification capability, but lacks cross-domain transferability. ChatGPT performs poorly, but its classification ability can be improved by providing more proposition information. Many issues are still far from being resolved and require further study.
With ubiquitous exposure of AI systems today, we believe AI development requires crucial considerations to be deemed trustworthy. While the potential of AI systems is bountiful, though, is still unknown-as are their risks. In this work, we offer a brief, high-level overview of societal impacts of AI systems. To do so, we highlight the requirement of multi-disciplinary governance and convergence throughout its lifecycle via critical systemic examinations (e.g., energy consumption), and later discuss induced effects on the environment (i.e., carbon footprint) and its users (i.e., social development). In particular, we consider these impacts from a multi-disciplinary perspective: computer science, sociology, environmental science, and so on to discuss its inter-connected societal risks and inability to simultaneously satisfy aspects of well-being. Therefore, we accentuate the necessity of holistically addressing pressing concerns of AI systems from a socioethical impact assessment perspective to explicate its harmful societal effects to truly enable humanity-centered Trustworthy AI.
As large language models (LLMs) like ChatGPT have gained traction, an increasing number of news websites have begun utilizing them to generate articles. However, not only can these language models produce factually inaccurate articles on reputable websites but disreputable news sites can utilize LLMs to mass produce misinformation. To begin to understand this phenomenon, we present one of the first large-scale studies of the prevalence of synthetic articles within online news media. To do this, we train a DeBERTa-based synthetic news detector and classify over 15.90 million articles from 3,074~misinformation and mainstream news websites. We find that between January 1, 2022, and May 1, 2023, the relative number of synthetic news articles increased by 61.1% on mainstream websites while increasing by 426% on misinformation sites. We find that this increase is largely driven by smaller less popular websites. Analyzing the impact of the release of ChatGPT using an interrupted-time-series, we show that while its release resulted in a marked increase in synthetic articles on small sites as well as misinformation news websites, there was not a corresponding increase on large mainstream news websites.
In neural network training, RMSProp and ADAM remain widely favoured optimization algorithms. One of the keys to their performance lies in selecting the correct step size, which can significantly influence their effectiveness. It is worth noting that these algorithms performance can vary considerably, depending on the chosen step sizes. Additionally, questions about their theoretical convergence properties continue to be a subject of interest. In this paper, we theoretically analyze a constant stepsize version of ADAM in the non-convex setting. We show sufficient conditions for the stepsize to achieve almost sure asymptotic convergence of the gradients to zero with minimal assumptions. We also provide runtime bounds for deterministic ADAM to reach approximate criticality when working with smooth, non-convex functions.
Recommender systems are used to provide relevant suggestions on various matters. Although these systems are a classical research topic, knowledge is still limited regarding the public opinion about these systems. Public opinion is also important because the systems are known to cause various problems. To this end, this paper presents a qualitative analysis of the perceptions of ordinary citizens, civil society groups, businesses, and others on recommender systems in Europe. The dataset examined is based on the answers submitted to a consultation about the Digital Services Act (DSA) recently enacted in the European Union (EU). Therefore, not only does the paper contribute to the pressing question about regulating new technologies and online platforms, but it also reveals insights about the policy-making of the DSA. According to the qualitative results, Europeans have generally negative opinions about recommender systems and the quality of their recommendations. The systems are widely seen to violate privacy and other fundamental rights. According to many Europeans, these also cause various societal problems, including even threats to democracy. Furthermore, existing regulations in the EU are commonly seen to have failed due to a lack of proper enforcement. Numerous suggestions were made by the respondents to the consultation for improving the situation, but only a few of these ended up to the DSA.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.