亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The accurate calculation and uncertainty quantification of the characteristics of spent nuclear fuel (SNF) play a crucial role in ensuring the safety, efficiency, and sustainability of nuclear energy production, waste management, and nuclear safeguards. State of the art physics-based models, while reliable, are computationally intensive and time-consuming. This paper presents a surrogate modeling approach using neural networks (NN) to predict a number of SNF characteristics with reduced computational costs compared to physics-based models. An NN is trained using data generated from CASMO5 lattice calculations. The trained NN accurately predicts decay heat and nuclide concentrations of SNF, as a function of key input parameters, such as enrichment, burnup, cooling time between cycles, mean boron concentration and fuel temperature. The model is validated against physics-based decay heat simulations and measurements of different uranium oxide fuel assemblies from two different pressurized water reactors. In addition, the NN is used to perform sensitivity analysis and uncertainty quantification. The results are in very good alignment to CASMO5, while the computational costs (taking into account the costs of generating training samples) are reduced by a factor of 10 or more. Our findings demonstrate the feasibility of using NNs as surrogate models for fast characterization of SNF, providing a promising avenue for improving computational efficiency in assessing nuclear fuel behavior and associated risks.

相關內容

This paper studies MapReduce-based heterogeneous coded distributed computing (CDC) where, besides different computing capabilities at workers, input files to be accessed by computing jobs have nonuniform popularity. We propose a file placement strategy that can handle an arbitrary number of input files. Furthermore, we design a nested coded shuffling strategy that can efficiently manage the nonuniformity of file popularity to maximize the coded multicasting opportunity. We then formulate the joint optimization of the proposed file placement and nested shuffling design variables to optimize the proposed CDC scheme. To reduce the high computational complexity in solving the resulting mixed-integer linear programming (MILP) problem, we propose a simple two-file-group-based file placement approach to obtain an approximate solution. Numerical results show that the optimized CDC scheme outperforms other alternatives. Also, the proposed two-file-group-based approach achieves nearly the same performance as the conventional branch-and-cut method in solving the MILP problem but with substantially lower computational complexity that is scalable over the number of files and workers. For computing jobs with aggregate target functions that commonly appear in machine learning applications, we propose a heterogeneous compressed CDC (C-CDC) scheme to further improve the shuffling efficiency. The C-CDC scheme uses a local data aggregation technique to compress the data to be shuffled for the shuffling load reduction. We again optimize the proposed C-CDC scheme and explore the two-file-group-based low-complexity approach for an approximate solution. Numerical results show the proposed C-CDC scheme provides a considerable shuffling load reduction over the CDC scheme, and also, the two-file-group-based file placement approach maintains good performance.

For finite element (FE) analysis of no-insulation (NI) high-temperature superconducting (HTS) pancake coils, the high aspect ratio of the turn-to-turn contact layer (T2TCL) leads to meshing difficulties which result in either poor quality mesh elements resulting in a decrease of the solution accuracy or a high number of degrees of freedom. We proposed to mitigate this issue by collapsing the T2TCL volume into a surface and using a so-called thin shell approximation (TSA). Previously, two TSA have been introduced, one to solve the heat equation and the other for an $\vec{H}-\phi$ magnetodynamic formulation. In this work, we propose to combine the magnetodynamic and thermal TSA to create a coupled magneto-thermal TSA for three-dimensional FE analysis. Particular attention is paid to the detailed derivation of the coupling terms. In the context of NI HTS pancake coils, the TSA represents the electric and thermal contact resistance of the T2TCL. For the HTS coated conductor (CC) itself, an anisotropic homogenization is used which represents its multi-layered structure. In axial and azimuthal direction, it resolves the current sharing between the HTS and other layers of the CC. The coupled TSA formulation is verified against a reference model with volumetric T2TCL. The coupled TSA is shown to significantly reduce the solution time as well as the manual effort required for high-quality meshes of the T2TCL. The implementation is open-source and a reference implementation is made publicly available.

Optimal battery sizing studies tend to overly simplify the practical aspects of battery operation within the battery sizing framework. Such assumptions may lead to a suboptimal battery capacity, resulting in significant financial losses for a battery project that could last more than a decade. In this paper, we compare the most common existing sizing methods in the literature with a battery sizing model that incorporates the practical operation of a battery, that is, receding horizon operation. Consequently, we quantify the financial losses caused by the suboptimal capacities obtained by these models for a realistic case study related to community battery storage (CBS). We develop the case study by constructing a mathematical framework for the CBS and local end users. Our results show that existing sizing methods can lead to financial losses of up to 22%.

This paper introduces a full system modeling strategy for a syringe pump and soft pneumatic actuators(SPAs). The soft actuator is conceptualized as a beam structure, utilizing a second-order bending model. The equation of natural frequency is derived from Euler's bending theory, while the damping ratio is estimated by fitting step responses of soft pneumatic actuators. Evaluation of model uncertainty underscores the robustness of our modeling methodology. To validate our approach, we deploy it across four prototypes varying in dimensional parameters. Furthermore, a syringe pump is designed to drive the actuator, and a pressure model is proposed to construct a full system model. By employing this full system model, the Linear-Quadratic Regulator (LQR) controller is implemented to control the soft actuator, achieving high-speed responses and high accuracy in both step response and square wave function response tests. Both the modeling method and the LQR controller are thoroughly evaluated through experiments. Lastly, a gripper, consisting of two actuators with a feedback controller, demonstrates stable grasping of delicate objects with a significantly higher success rate.

We consider the diffusion of two alternatives in social networks using a game-theoretic approach. Each individual plays a coordination game with its neighbors repeatedly and decides which to adopt. As products are used in conjunction with others and through repeated interactions, individuals are more interested in their long-term benefits and tend to show trust to others to maximize their long-term utility by choosing a suboptimal option with respect to instantaneous payoff. To capture such trust behavior, we deploy limited-trust equilibrium (LTE) in diffusion process. We analyze the convergence of emerging dynamics to equilibrium points using mean-field approximation and study the equilibrium state and the convergence rate of diffusion using absorption probability and expected absorption time of a reduced-size absorbing Markov chain. We also show that the diffusion model on LTE under the best-response strategy can be converted to the well-known linear threshold model. Simulation results show that when agents behave trustworthy, their long-term utility will increase significantly compared to the case when they are solely self-interested. Moreover, the Markov chain analysis provides a good estimate of convergence properties over random networks.

Change blindness is a phenomenon where an individual fails to notice alterations in a visual scene when a change occurs during a brief interruption or distraction. Understanding this phenomenon is specifically important for the technique that uses a visual stimulus, such as Virtual Reality (VR) or Augmented Reality (AR). Previous research had primarily focused on 2D environments or conducted limited controlled experiments in 3D immersive environments. In this paper, we design and conduct two formal user experiments to investigate the effects of different visual attention-disrupting conditions (Flickering and Head-Turning) and object alternative conditions (Removal, Color Alteration, and Size Alteration) on change blindness detection in VR and AR environments. Our results reveal that participants detected changes more quickly and had a higher detection rate with Flickering compared to Head-Turning. Furthermore, they spent less time detecting changes when an object disappeared compared to changes in color or size. Additionally, we provide a comparison of the results between VR and AR environments.

The interaction of fibers in a viscous (Stokes) fluid plays a crucial role in industrial and biological processes, such as sedimentation, rheology, transport, cell division, and locomotion. Numerical simulations generally rely on slender body theory (SBT), an asymptotic, nonconvergent approximation whose error blows up as fibers approach each other. Yet convergent boundary integral equation (BIE) methods which completely resolve the fiber surface have so far been impractical due to the prohibitive cost of layer-potential quadratures in such high aspect-ratio 3D geometries. We present a high-order Nystr\"om quadrature scheme with aspect-ratio independent cost, making such BIEs practical. It combines centerline panels (each with a small number of poloidal Fourier modes), toroidal Green's functions, generalized Chebyshev quadratures, HPC parallel implementation, and FMM acceleration. We also present new BIE formulations for slender bodies that lead to well conditioned linear systems upon discretization. We test Laplace and Stokes Dirichlet problems, and Stokes mobility problems, for slender rigid closed fibers with (possibly varying) circular cross-section, at separations down to $1/20$ of the slender radius, reporting convergence typically to at least 10 digits. We use this to quantify the breakdown of numerical SBT for close-to-touching rigid fibers. We also apply the methods to time-step the sedimentation of 512 loops with up to $1.65$ million unknowns at around 7 digits of accuracy.

To maintain a reliable grid we need fast decision-making algorithms for complex problems like Dynamic Reconfiguration (DyR). DyR optimizes distribution grid switch settings in real-time to minimize grid losses and dispatches resources to supply loads with available generation. DyR is a mixed-integer problem and can be computationally intractable to solve for large grids and at fast timescales. We propose GraPhyR, a Physics-Informed Graph Neural Network (GNNs) framework tailored for DyR. We incorporate essential operational and connectivity constraints directly within the GNN framework and train it end-to-end. Our results show that GraPhyR is able to learn to optimize the DyR task.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司