亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conversational recommendation systems (CRS) aim to elicit user preferences and provide satisfying recommendations through natural language interactions. Existing CRS methods often assume that users have clear and consistent preferences, which may not reflect the reality of user decision-making processes. In this paper, we introduce a novel scenario called Vague Preference Multi-round Conversational Recommendation (VPMCR), which considers users' vague and dynamic preferences in CRS. In the VPMCR setting, we propose a solution called Adaptive Vague Preference Policy Learning (AVPPL), which consists of two components: Ambiguity-aware Soft Estimation (ASE) and Dynamism-aware Policy Learning (DPL). ASE estimates the vagueness of user feedback and captures their dynamic preferences using a choice-based preference extraction module and a time-aware decaying strategy. DPL leverages the preference distribution estimated by ASE to guide the conversation and adapt to changes in user preferences using a graph-based conversation modeling module and a vague preference policy learning module. We conduct extensive experiments on four real-world datasets and demonstrate the effectiveness of our method in the VPMCR scenario, setting a new benchmark for future research in CRS.

相關內容

Several applications in time series forecasting require predicting multiple steps ahead. Despite the vast amount of literature in the topic, both classical and recent deep learning based approaches have mostly focused on minimising performance averaged over the predicted window. We observe that this can lead to disparate distributions of errors across forecasting steps, especially for recent transformer architectures trained on popular forecasting benchmarks. That is, optimising performance on average can lead to undesirably large errors at specific time-steps. In this work, we present a Constrained Learning approach for long-term time series forecasting that aims to find the best model in terms of average performance that respects a user-defined upper bound on the loss at each time-step. We call our approach loss shaping constraints because it imposes constraints on the loss at each time step, and leverage recent duality results to show that despite its non-convexity, the resulting problem has a bounded duality gap. We propose a practical Primal-Dual algorithm to tackle it, and demonstrate that the proposed approach exhibits competitive average performance in time series forecasting benchmarks, while shaping the distribution of errors across the predicted window.

We resolve the open question regarding the sample complexity of policy learning for maximizing the long-run average reward associated with a uniformly ergodic Markov decision process (MDP), assuming a generative model. In this context, the existing literature provides a sample complexity upper bound of $\widetilde O(|S||A|t_{\text{mix}}^2 \epsilon^{-2})$ and a lower bound of $\Omega(|S||A|t_{\text{mix}} \epsilon^{-2})$. In these expressions, $|S|$ and $|A|$ denote the cardinalities of the state and action spaces respectively, $t_{\text{mix}}$ serves as a uniform upper limit for the total variation mixing times, and $\epsilon$ signifies the error tolerance. Therefore, a notable gap of $t_{\text{mix}}$ still remains to be bridged. Our primary contribution is the development of an estimator for the optimal policy of average reward MDPs with a sample complexity of $\widetilde O(|S||A|t_{\text{mix}}\epsilon^{-2})$. This marks the first algorithm and analysis to reach the literature's lower bound. Our new algorithm draws inspiration from ideas in Li et al. (2020), Jin and Sidford (2021), and Wang et al. (2023). Additionally, we conduct numerical experiments to validate our theoretical findings.

Android applications collecting data from users must protect it according to the current legal frameworks. Such data protection has become even more important since the European Union rolled out the General Data Protection Regulation (GDPR). Since app developers are not legal experts, they find it difficult to write privacy-aware source code. Moreover, they have limited tool support to reason about data protection throughout their app development process. This paper motivates the need for a static analysis approach to diagnose and explain data protection in Android apps. The analysis will recognize personal data sources in the source code, and aims to further examine the data flow originating from these sources. App developers can then address key questions about data manipulation, derived data, and the presence of technical measures. Despite challenges, we explore to what extent one can realize this analysis through static taint analysis, a common method for identifying security vulnerabilities. This is a first step towards designing a tool-based approach that aids app developers and assessors in ensuring data protection in Android apps, based on automated static program analysis.

This work develops a provably accurate fully-decentralized alternating projected gradient descent (GD) algorithm for recovering a low rank (LR) matrix from mutually independent projections of each of its columns, in a fast and communication-efficient fashion. To our best knowledge, this work is the first attempt to develop a provably correct decentralized algorithm (i) for any problem involving the use of an alternating projected GD algorithm; (ii) and for any problem in which the constraint set to be projected to is a non-convex set.

We provide the first perceptual quantification of user's sensitivity to radial optic flow artifacts and demonstrate a promising approach for masking this optic flow artifact via blink suppression. Near-eye HMDs allow users to feel immersed in virtual environments by providing visual cues, like motion parallax and stereoscopy, that mimic how we view the physical world. However, these systems exhibit a variety of perceptual artifacts that can limit their usability and the user's sense of presence in VR. One well-known artifact is the vergence-accommodation conflict (VAC). Varifocal displays can mitigate VAC, but bring with them other artifacts such as a change in virtual image size (radial optic flow) when the focal plane changes. We conducted a set of psychophysical studies to measure users' ability to perceive this radial flow artifact before, during, and after self-initiated blinks. Our results showed that visual sensitivity was reduced by a factor of 10 at the start and for ~70 ms after a blink was detected. Pre- and post-blink sensitivity was, on average, ~0.15% image size change during normal viewing and increased to ~1.5-2.0% during blinks. Our results imply that a rapid (under 70 ms) radial optic flow distortion can go unnoticed during a blink. Furthermore, our results provide empirical data that can be used to inform engineering requirements for both hardware design and software-based graphical correction algorithms for future varifocal near-eye displays. Our project website is available at //gamma.umd.edu/RoF/.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

The chronological order of user-item interactions can reveal time-evolving and sequential user behaviors in many recommender systems. The items that users will interact with may depend on the items accessed in the past. However, the substantial increase of users and items makes sequential recommender systems still face non-trivial challenges: (1) the hardness of modeling the short-term user interests; (2) the difficulty of capturing the long-term user interests; (3) the effective modeling of item co-occurrence patterns. To tackle these challenges, we propose a memory augmented graph neural network (MA-GNN) to capture both the long- and short-term user interests. Specifically, we apply a graph neural network to model the item contextual information within a short-term period and utilize a shared memory network to capture the long-range dependencies between items. In addition to the modeling of user interests, we employ a bilinear function to capture the co-occurrence patterns of related items. We extensively evaluate our model on five real-world datasets, comparing with several state-of-the-art methods and using a variety of performance metrics. The experimental results demonstrate the effectiveness of our model for the task of Top-K sequential recommendation.

Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.

北京阿比特科技有限公司