The traditional Transformer model encounters challenges with variable-length input sequences, particularly in Hyperspectral Image Classification (HSIC), leading to efficiency and scalability concerns. To overcome this, we propose a pyramid-based hierarchical transformer (PyFormer). This innovative approach organizes input data hierarchically into segments, each representing distinct abstraction levels, thereby enhancing processing efficiency for lengthy sequences. At each level, a dedicated transformer module is applied, effectively capturing both local and global context. Spatial and spectral information flow within the hierarchy facilitates communication and abstraction propagation. Integration of outputs from different levels culminates in the final input representation. Experimental results underscore the superiority of the proposed method over traditional approaches. Additionally, the incorporation of disjoint samples augments robustness and reliability, thereby highlighting the potential of our approach in advancing HSIC. The source code is available at //github.com/mahmad00/PyFormer.
We propose a novel approximate factor model tailored for analyzing time-dependent curve data. Our model decomposes such data into two distinct components: a low-dimensional predictable factor component and an unpredictable error term. These components are identified through the autocovariance structure of the underlying functional time series. The model parameters are consistently estimated using the eigencomponents of a cumulative autocovariance operator and an information criterion is proposed to determine the appropriate number of factors. The methodology is applied to yield curve modeling and forecasting. Our results indicate that more than three factors are required to characterize the dynamics of the term structure of bond yields.
This paper introduces a uniform substitution calculus for differential refinement logic dRL. The logic dRL extends the differential dynamic logic dL such that one can simultaneously reason about properties of and relations between hybrid systems. Refinements are useful e.g. for simplifying proofs by relating a concrete hybrid system to an abstract one from which the property can be proved more easily. Uniform substitution is the key to parsimonious prover microkernels. It enables the verbatim use of single axiom formulas instead of axiom schemata with soundness-critical side conditions scattered across the proof calculus. The uniform substitution rule can then be used to instantiate all axioms soundly. Access to differential variables in dRL enables more control over the notion of refinement, which is shown to be decidable on a fragment of hybrid programs.
In offline reinforcement learning, the challenge of out-of-distribution (OOD) is pronounced. To address this, existing methods often constrain the learned policy through policy regularization. However, these methods often suffer from the issue of unnecessary conservativeness, hampering policy improvement. This occurs due to the indiscriminate use of all actions from the behavior policy that generates the offline dataset as constraints. The problem becomes particularly noticeable when the quality of the dataset is suboptimal. Thus, we propose Adaptive Advantage-guided Policy Regularization (A2PR), obtaining high-advantage actions from an augmented behavior policy combined with VAE to guide the learned policy. A2PR can select high-advantage actions that differ from those present in the dataset, while still effectively maintaining conservatism from OOD actions. This is achieved by harnessing the VAE capacity to generate samples matching the distribution of the data points. We theoretically prove that the improvement of the behavior policy is guaranteed. Besides, it effectively mitigates value overestimation with a bounded performance gap. Empirically, we conduct a series of experiments on the D4RL benchmark, where A2PR demonstrates state-of-the-art performance. Furthermore, experimental results on additional suboptimal mixed datasets reveal that A2PR exhibits superior performance. Code is available at //github.com/ltlhuuu/A2PR.
Among various acquisition functions (AFs) in Bayesian optimization (BO), Gaussian process upper confidence bound (GP-UCB) and Thompson sampling (TS) are well-known options with established theoretical properties regarding Bayesian cumulative regret (BCR). Recently, it has been shown that a randomized variant of GP-UCB achieves a tighter BCR bound compared with GP-UCB, which we call the tighter BCR bound for brevity. Inspired by this study, this paper first shows that TS achieves the tighter BCR bound. On the other hand, GP-UCB and TS often practically suffer from manual hyperparameter tuning and over-exploration issues, respectively. Therefore, we analyze yet another AF called a probability of improvement from the maximum of a sample path (PIMS). We show that PIMS achieves the tighter BCR bound and avoids the hyperparameter tuning, unlike GP-UCB. Furthermore, we demonstrate a wide range of experiments, focusing on the effectiveness of PIMS that mitigates the practical issues of GP-UCB and TS.
Despite their benefits in terms of simplicity, low computational cost and data requirement, parametric machine learning algorithms, such as linear discriminant analysis, quadratic discriminant analysis or logistic regression, suffer from serious drawbacks including linearity, poor fit of features to the usually imposed normal distribution and high dimensionality. Batch kernel-based nonparametric classifier, which overcomes the linearity and normality of features constraints, represent an interesting alternative for supervised classification problem. However, it suffers from the ``curse of dimension". The problem can be alleviated by the explosive sample size in the era of big data, while large-scale data size presents some challenges in the storage of data and the calculation of the classifier. These challenges make the classical batch nonparametric classifier no longer applicable. This motivates us to develop a fast algorithm adapted to the real-time calculation of the nonparametric classifier in massive as well as streaming data frameworks. This online classifier includes two steps. First, we consider an online principle components analysis to reduce the dimension of the features with a very low computation cost. Then, a stochastic approximation algorithm is deployed to obtain a real-time calculation of the nonparametric classifier. The proposed methods are evaluated and compared to some commonly used machine learning algorithms for real-time fetal well-being monitoring. The study revealed that, in terms of accuracy, the offline (or Batch), as well as, the online classifiers are good competitors to the random forest algorithm. Moreover, we show that the online classifier gives the best trade-off accuracy/computation cost compared to the offline classifier.
Estimators of doubly robust functionals typically rely on estimating two complex nuisance functions, such as the propensity score and conditional outcome mean for the average treatment effect functional. We consider the problem of how to estimate nuisance functions to obtain optimal rates of convergence for a doubly robust nonparametric functional that has witnessed applications across the causal inference and conditional independence testing literature. For several plug-in type estimators and a one-step type estimator, we illustrate the interplay between different tuning parameter choices for the nuisance function estimators and sample splitting strategies on the optimal rate of estimating the functional of interest. For each of these estimators and each sample splitting strategy, we show the necessity to undersmooth the nuisance function estimators under low regularity conditions to obtain optimal rates of convergence for the functional of interest. By performing suitable nuisance function tuning and sample splitting strategies, we show that some of these estimators can achieve minimax rates of convergence in all H\"older smoothness classes of the nuisance functions.
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.