亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the notions of (i) critical points, (ii) second-order points, (iii) local minima, and (iv) strict local minima for multivariate polynomials. For each type of point, and as a function of the degree of the polynomial, we study the complexity of deciding (1) if a given point is of that type, and (2) if a polynomial has a point of that type. Our results characterize the complexity of these two questions for all degrees left open by prior literature. Our main contributions reveal that many of these questions turn out to be tractable for cubic polynomials. In particular, we present an efficiently-checkable necessary and sufficient condition for local minimality of a point for a cubic polynomial. We also show that a local minimum of a cubic polynomial can be efficiently found by solving semidefinite programs of size linear in the number of variables. By contrast, we show that it is strongly NP-hard to decide if a cubic polynomial has a critical point. We also prove that the set of second-order points of any cubic polynomial is a spectrahedron, and conversely that any spectrahedron is the projection of the set of second-order points of a cubic polynomial. In our final section, we briefly present a potential application of finding local minima of cubic polynomials to the design of a third-order Newton method.

相關內容

In distributed differential privacy, the parties perform analysis over their joint data while preserving the privacy for both datasets. Interestingly, for a few fundamental two-party functions such as inner product and Hamming distance, the accuracy of the distributed solution lags way behind what is achievable in the client-server setting. McGregor, Mironov, Pitassi, Reingold, Talwar, and Vadhan [FOCS '10] proved that this gap is inherent, showing upper bounds on the accuracy of (any) distributed solution for these functions. These limitations can be bypassed when settling for computational differential privacy, where the data is differentially private only in the eyes of a computationally bounded observer, using public-key cryptography primitives. We prove that the use of public-key cryptography is necessary for bypassing the limitation of McGregor et al., showing that a non-trivial solution for the inner-product, or the Hamming distance, implies the existence of a key-agreement protocol. Our bound implies a combinatorial proof for the fact that non-Boolean inner product of independent (strong) Santha-Vazirani sources is a good condenser. We obtain our main result by showing that the inner-product of a (single, strong) SV source with a uniformly random seed is a good condenser, even when the seed and source are dependent.

The Chebyshev or $\ell_{\infty}$ estimator is an unconventional alternative to the ordinary least squares in solving linear regressions. It is defined as the minimizer of the $\ell_{\infty}$ objective function \begin{align*} \hat{\boldsymbol{\beta}} := \arg\min_{\boldsymbol{\beta}} \|\boldsymbol{Y} - \mathbf{X}\boldsymbol{\beta}\|_{\infty}. \end{align*} The asymptotic distribution of the Chebyshev estimator under fixed number of covariates were recently studied (Knight, 2020), yet finite sample guarantees and generalizations to high-dimensional settings remain open. In this paper, we develop non-asymptotic upper bounds on the estimation error $\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}^*\|_2$ for a Chebyshev estimator $\hat{\boldsymbol{\beta}}$, in a regression setting with uniformly distributed noise $\varepsilon_i\sim U([-a,a])$ where $a$ is either known or unknown. With relatively mild assumptions on the (random) design matrix $\mathbf{X}$, we can bound the error rate by $\frac{C_p}{n}$ with high probability, for some constant $C_p$ depending on the dimension $p$ and the law of the design. Furthermore, we illustrate that there exist designs for which the Chebyshev estimator is (nearly) minimax optimal. In addition we show that "Chebyshev's LASSO" has advantages over the regular LASSO in high dimensional situations, provided that the noise is uniform. Specifically, we argue that it achieves a much faster rate of estimation under certain assumptions on the growth rate of the sparsity level and the ambient dimension with respect to the sample size.

We study optimal minimum degree conditions when an $n$-vertex graph $G$ contains an $r$-regular $r$-connected subgraph. We prove for $r$ fixed and $n$ large the condition to be $\delta(G) \ge \frac{n+r-2}{2}$ when $nr \equiv 0 \pmod 2$. This answers a question of M.~Kriesell.

We survey the average-case complexity of problems in NP. We discuss various notions of good-on-average algorithms, and present completeness results due to Impagliazzo and Levin. Such completeness results establish the fact that if a certain specific (but somewhat artificial) NP problem is easy-on-average with respect to the uniform distribution, then all problems in NP are easy-on-average with respect to all samplable distributions. Applying the theory to natural distributional problems remain an outstanding open question. We review some natural distributional problems whose average-case complexity is of particular interest and that do not yet fit into this theory. A major open question whether the existence of hard-on-average problems in NP can be based on the P$\neq$NP assumption or on related worst-case assumptions. We review negative results showing that certain proof techniques cannot prove such a result. While the relation between worst-case and average-case complexity for general NP problems remains open, there has been progress in understanding the relation between different "degrees" of average-case complexity. We discuss some of these "hardness amplification" results.

Over-the-Air (OTA) computation is the problem of computing functions of distributed data without transmitting the entirety of the data to a central point. By avoiding such costly transmissions, OTA computation schemes can achieve a better-than-linear (depending on the function, often logarithmic or even constant) scaling of the communication cost as the number of transmitters grows. Among the most common functions computed OTA are linear functions such as weighted sums. In this work, we propose and analyze an analog OTA computation scheme for a class of functions that contains linear functions as well as some nonlinear functions such as $p$-norms of vectors. We prove error bound guarantees that are valid for fast-fading channels and all distributions of fading and noise contained in the class of sub-Gaussian distributions. This class includes Gaussian distributions, but also many other practically relevant cases such as Class A Middleton noise and fading with dominant line-of-sight components. In addition, there can be correlations in the fading and noise so that the presented results also apply to, for example, block fading channels and channels with bursty interference. We do not rely on any stochastic characterization of the distributed arguments of the OTA computed function; in particular, there is no assumption that these arguments are drawn from identical or independent probability distributions. Our analysis is nonasymptotic and therefore provides error bounds that are valid for a finite number of channel uses. OTA computation has a huge potential for reducing communication cost in applications such as Machine Learning (ML)-based distributed anomaly detection in large wireless sensor networks. We illustrate this potential through extensive numerical simulations.

Describing systems in terms of choices and their resulting costs and rewards offers the promise of freeing algorithm designers and programmers from specifying how those choices should be made; in implementations, the choices can be realized by optimization techniques and, increasingly, by machine-learning methods. We study this approach from a programming-language perspective. We define two small languages that support decision-making abstractions: one with choices and rewards, and the other additionally with probabilities. We give both operational and denotational semantics. In the case of the second language we consider three denotational semantics, with varying degrees of correlation between possible program values and expected rewards. The operational semantics combine the usual semantics of standard constructs with optimization over spaces of possible execution strategies. The denotational semantics, which are compositional, rely on the selection monad, to handle choice, augmented with an auxiliary monad to handle other effects, such as rewards or probability. We establish adequacy theorems that the two semantics coincide in all cases. We also prove full abstraction at base types, with varying notions of observation in the probabilistic case corresponding to the various degrees of correlation. We present axioms for choice combined with rewards and probability, establishing completeness at base types for the case of rewards without probability.

In this paper, we analyse singular values of a large $p\times n$ data matrix $\mathbf{X}_n= (\mathbf{x}_{n1},\ldots,\mathbf{x}_{nn})$ where the column $\mathbf{x}_{nj}$'s are independent $p$-dimensional vectors, possibly with different distributions. Such data matrices are common in high-dimensional statistics. Under a key assumption that the covariance matrices $\mathbf{\Sigma}_{nj}=\text{Cov}(\mathbf{x}_{nj})$ can be asymptotically simultaneously diagonalizable, and appropriate convergence of their spectra, we establish a limiting distribution for the singular values of $\mathbf{X}_n$ when both dimension $p$ and $n$ grow to infinity in a comparable magnitude. The matrix model goes beyond and includes many existing works on different types of sample covariance matrices, including the weighted sample covariance matrix, the Gram matrix model and the sample covariance matrix of linear times series models. Furthermore, we develop two applications of our general approach. First, we obtain the existence and uniqueness of a new limiting spectral distribution of realized covariance matrices for a multi-dimensional diffusion process with anisotropic time-varying co-volatility processes. Secondly, we derive the limiting spectral distribution for singular values of the data matrix for a recent matrix-valued auto-regressive model. Finally, for a generalized finite mixture model, the limiting spectral distribution for singular values of the data matrix is obtained.

The problem of finding the unique low dimensional decomposition of a given matrix has been a fundamental and recurrent problem in many areas. In this paper, we study the problem of seeking a unique decomposition of a low rank matrix $Y\in \mathbb{R}^{p\times n}$ that admits a sparse representation. Specifically, we consider $Y = A X\in \mathbb{R}^{p\times n}$ where the matrix $A\in \mathbb{R}^{p\times r}$ has full column rank, with $r < \min\{n,p\}$, and the matrix $X\in \mathbb{R}^{r\times n}$ is element-wise sparse. We prove that this sparse decomposition of $Y$ can be uniquely identified, up to some intrinsic signed permutation. Our approach relies on solving a nonconvex optimization problem constrained over the unit sphere. Our geometric analysis for the nonconvex optimization landscape shows that any {\em strict} local solution is close to the ground truth solution, and can be recovered by a simple data-driven initialization followed with any second order descent algorithm. At last, we corroborate these theoretical results with numerical experiments.

We propose straightforward nonparametric estimators for the mean and the covariance functions of functional data. Our setup covers a wide range of practical situations. The random trajectories are, not necessarily differentiable, have unknown regularity, and are measured with error at discrete design points. The measurement error could be heteroscedastic. The design points could be either randomly drawn or common for all curves. The definition of our nonparametric estimators depends on the local regularity of the stochastic process generating the functional data. We first propose a simple estimator of this local regularity which takes strength from the replication and regularization features of functional data. Next, we use the "smoothing first, then estimate" approach for the mean and the covariance functions. The new nonparametric estimators achieve optimal rates of convergence. They can be applied with both sparsely or densely sampled curves, are easy to calculate and to update, and perform well in simulations. Simulations built upon a real data example on household power consumption illustrate the effectiveness of the new approach.

We revisit the problem of integer factorization with number-theoretic oracles, including a well-known problem: can we factor an integer $N$ unconditionally, in deterministic polynomial time, given the value of the Euler totient $$\Phi$(N)$? We show that this can be done, under certain size conditions on the prime factors of N. The key technique is lattice basis reduction using the LLL algorithm. Among our results, we show for example that if $N$ is a squarefree integer with a prime factor $p > $\sqrt$ N$ , then we can recover p in deterministic polynomial time given $$\Phi$(N)$. We also shed some light on the analogous problems for Carmichael's function, and the order oracle that is used in Shor's quantum factoring algorithm.

北京阿比特科技有限公司