亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this letter, we propose a Gaussian mixture model (GMM)-based channel estimator which is learned on imperfect training data, i.e., the training data are solely comprised of noisy and sparsely allocated pilot observations. In a practical application, recent pilot observations at the base station (BS) can be utilized for training. This is in sharp contrast to state-of-theart machine learning (ML) techniques where a training dataset consisting of perfect channel state information (CSI) samples is a prerequisite, which is generally unaffordable. In particular, we propose an adapted training procedure for fitting the GMM which is a generative model that represents the distribution of all potential channels associated with a specific BS cell. To this end, the necessary modifications of the underlying expectation-maximization (EM) algorithm are derived. Numerical results show that the proposed estimator performs close to the case where perfect CSI is available for the training and exhibits a higher robustness against imperfections in the training data as compared to state-of-the-art ML techniques.

相關內容

In this paper, we consider inference in the context of a factor model for tensor-valued time series. We study the consistency of the estimated common factors and loadings space when using estimators based on minimising quadratic loss functions. Building on the observation that such loss functions are adequate only if sufficiently many moments exist, we extend our results to the case of heavy-tailed distributions by considering estimators based on minimising the Huber loss function, which uses an $L_{1}$-norm weight on outliers. We show that such class of estimators is robust to the presence of heavy tails, even when only the second moment of the data exists.

The performance of neural network-based speech enhancement systems is primarily influenced by the model architecture, whereas training times and computational resource utilization are primarily affected by training parameters such as the batch size. Since noisy and reverberant speech mixtures can have different duration, a batching strategy is required to handle variable size inputs during training, in particular for state-of-the-art end-to-end systems. Such strategies usually strive for a compromise between zero-padding and data randomization, and can be combined with a dynamic batch size for a more consistent amount of data in each batch. However, the effect of these strategies on resource utilization and more importantly network performance is not well documented. This paper systematically investigates the effect of different batching strategies and batch sizes on the training statistics and speech enhancement performance of a Conv-TasNet, evaluated in both matched and mismatched conditions. We find that using a small batch size during training improves performance in both conditions for all batching strategies. Moreover, using sorted or bucket batching with a dynamic batch size allows for reduced training time and GPU memory usage while achieving similar performance compared to random batching with a fixed batch size.

We present the design of a productionized end-to-end stereo depth sensing system that does pre-processing, online stereo rectification, and stereo depth estimation with a fallback to monocular depth estimation when rectification is unreliable. The output of our depth sensing system is then used in a novel view generation pipeline to create 3D computational photography effects using point-of-view images captured by smart glasses. All these steps are executed on-device on the stringent compute budget of a mobile phone, and because we expect the users can use a wide range of smartphones, our design needs to be general and cannot be dependent on a particular hardware or ML accelerator such as a smartphone GPU. Although each of these steps is well studied, a description of a practical system is still lacking. For such a system, all these steps need to work in tandem with one another and fallback gracefully on failures within the system or less than ideal input data. We show how we handle unforeseen changes to calibration, e.g., due to heat, robustly support depth estimation in the wild, and still abide by the memory and latency constraints required for a smooth user experience. We show that our trained models are fast, and run in less than 1s on a six-year-old Samsung Galaxy S8 phone's CPU. Our models generalize well to unseen data and achieve good results on Middlebury and in-the-wild images captured from the smart glasses.

To improve how neural networks function it is crucial to understand their learning process. The information bottleneck theory of deep learning proposes that neural networks achieve good generalization by compressing their representations to disregard information that is not relevant to the task. However, empirical evidence for this theory is conflicting, as compression was only observed when networks used saturating activation functions. In contrast, networks with non-saturating activation functions achieved comparable levels of task performance but did not show compression. In this paper we developed more robust mutual information estimation techniques, that adapt to hidden activity of neural networks and produce more sensitive measurements of activations from all functions, especially unbounded functions. Using these adaptive estimation techniques, we explored compression in networks with a range of different activation functions. With two improved methods of estimation, firstly, we show that saturation of the activation function is not required for compression, and the amount of compression varies between different activation functions. We also find that there is a large amount of variation in compression between different network initializations. Secondary, we see that L2 regularization leads to significantly increased compression, while preventing overfitting. Finally, we show that only compression of the last layer is positively correlated with generalization.

Item response theory aims to estimate respondent's latent skills from their responses in tests composed of items with different levels of difficulty. Several models of item response theory have been proposed for different types of tasks, such as binary or probabilistic responses, response time, multiple responses, among others. In this paper, we propose a new version of $\beta^3$-IRT, called $\beta^{4}$-IRT, which uses the gradient descent method to estimate the model parameters. In $\beta^3$-IRT, abilities and difficulties are bounded, thus we employ link functions in order to turn $\beta^{4}$-IRT into an unconstrained gradient descent process. The original $\beta^3$-IRT had a symmetry problem, meaning that, if an item was initialised with a discrimination value with the wrong sign, e.g. negative when the actual discrimination should be positive, the fitting process could be unable to recover the correct discrimination and difficulty values for the item. In order to tackle this limitation, we modelled the discrimination parameter as the product of two new parameters, one corresponding to the sign and the second associated to the magnitude. We also proposed sensible priors for all parameters. We performed experiments to compare $\beta^{4}$-IRT and $\beta^3$-IRT regarding parameter recovery and our new version outperformed the original $\beta^3$-IRT. Finally, we made $\beta^{4}$-IRT publicly available as a Python package, along with the implementation of $\beta^3$-IRT used in our experiments.

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.

Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

北京阿比特科技有限公司