Diffusion models, as a kind of powerful generative model, have given impressive results on image super-resolution (SR) tasks. However, due to the randomness introduced in the reverse process of diffusion models, the performances of diffusion-based SR models are fluctuating at every time of sampling, especially for samplers with few resampled steps. This inherent randomness of diffusion models results in ineffectiveness and instability, making it challenging for users to guarantee the quality of SR results. However, our work takes this randomness as an opportunity: fully analyzing and leveraging it leads to the construction of an effective plug-and-play sampling method that owns the potential to benefit a series of diffusion-based SR methods. More in detail, we propose to steadily sample high-quality SR images from pretrained diffusion-based SR models by solving diffusion ordinary differential equations (diffusion ODEs) with optimal boundary conditions (BCs) and analyze the characteristics between the choices of BCs and their corresponding SR results. Our analysis shows the route to obtain an approximately optimal BC via an efficient exploration in the whole space. The quality of SR results sampled by the proposed method with fewer steps outperforms the quality of results sampled by current methods with randomness from the same pretrained diffusion-based SR model, which means that our sampling method ``boosts'' current diffusion-based SR models without any additional training.
The increasing volume and velocity of science data necessitate the frequent movement of enormous data volumes as part of routine research activities. As a result, limited wide-area bandwidth often leads to bottlenecks in research progress. However, in many cases, consuming applications (e.g., for analysis, visualization, and machine learning) can achieve acceptable performance on reduced-precision data, and thus researchers may wish to compromise on data precision to reduce transfer and storage costs. Error-bounded lossy compression presents a promising approach as it can significantly reduce data volumes while preserving data integrity based on user-specified error bounds. In this paper, we propose a novel data transfer framework called Ocelot that integrates error-bounded lossy compression into the Globus data transfer infrastructure. We note four key contributions: (1) Ocelot is the first integration of lossy compression in Globus to significantly improve scientific data transfer performance over wide area network (WAN). (2) We propose an effective machine-learning based lossy compression quality estimation model that can predict the quality of error-bounded lossy compressors, which is fundamental to ensure that transferred data are acceptable to users. (3) We develop optimized strategies to reduce the compression time overhead, counter the compute-node waiting time, and improve transfer speed for compressed files. (4) We perform evaluations using many real-world scientific applications across different domains and distributed Globus endpoints. Our experiments show that Ocelot can improve dataset transfer performance substantially, and the quality of lossy compression (time, ratio and data distortion) can be predicted accurately for the purpose of quality assurance.
In this paper, we provide a theoretical analysis of the recently introduced weakly adversarial networks (WAN) method, used to approximate partial differential equations in high dimensions. We address the existence and stability of the solution, as well as approximation bounds. More precisely, we prove the existence of discrete solutions, intended in a suitable weak sense, for which we prove a quasi-best approximation estimate similar to Cea's lemma, a result commonly found in finite element methods. We also propose two new stabilized WAN-based formulas that avoid the need for direct normalization. Furthermore, we analyze the method's effectiveness for the Dirichlet boundary problem that employs the implicit representation of the geometry. The key requirement for achieving the best approximation outcome is to ensure that the space for the test network satisfies a specific condition, known as the inf-sup condition, essentially requiring that the test network set is sufficiently large when compared to the trial space. The method's accuracy, however, is only determined by the space of the trial network. We also devise a pseudo-time XNODE neural network class for static PDE problems, yielding significantly faster convergence results than the classical DNN network.
This paper addresses the challenges of optimally placing a finite number of sensors to detect Poisson-distributed targets in a bounded domain. We seek to rigorously account for uncertainty in the target arrival model throughout the problem. Sensor locations are selected to maximize the probability that no targets are missed. While this objective function is well-suited to applications where failure to detect targets is highly undesirable, it does not lead to a computationally efficient optimization problem. We propose an approximation of the objective function that is non-negative, submodular, and monotone and for which greedy selection of sensor locations works well. We also characterize the gap between the desired objective function and our approximation. For numerical illustrations, we consider the case of the detection of ship traffic using sensors mounted on the seafloor.
Age and gender recognition in the wild is a highly challenging task: apart from the variability of conditions, pose complexities, and varying image quality, there are cases where the face is partially or completely occluded. We present MiVOLO (Multi Input VOLO), a straightforward approach for age and gender estimation using the latest vision transformer. Our method integrates both tasks into a unified dual input/output model, leveraging not only facial information but also person image data. This improves the generalization ability of our model and enables it to deliver satisfactory results even when the face is not visible in the image. To evaluate our proposed model, we conduct experiments on four popular benchmarks and achieve state-of-the-art performance, while demonstrating real-time processing capabilities. Additionally, we introduce a novel benchmark based on images from the Open Images Dataset. The ground truth annotations for this benchmark have been meticulously generated by human annotators, resulting in high accuracy answers due to the smart aggregation of votes. Furthermore, we compare our model's age recognition performance with human-level accuracy and demonstrate that it significantly outperforms humans across a majority of age ranges. Finally, we grant public access to our models, along with the code for validation and inference. In addition, we provide extra annotations for used datasets and introduce our new benchmark.
Sampling conditional distributions is a fundamental task for Bayesian inference and density estimation. Generative models, such as normalizing flows and generative adversarial networks, characterize conditional distributions by learning a transport map that pushes forward a simple reference (e.g., a standard Gaussian) to a target distribution. While these approaches successfully describe many non-Gaussian problems, their performance is often limited by parametric bias and the reliability of gradient-based (adversarial) optimizers to learn these transformations. This work proposes a non-parametric generative model that iteratively maps reference samples to the target. The model uses block-triangular transport maps, whose components are shown to characterize conditionals of the target distribution. These maps arise from solving an optimal transport problem with a weighted $L^2$ cost function, thereby extending the data-driven approach in [Trigila and Tabak, 2016] for conditional sampling. The proposed approach is demonstrated on a two dimensional example and on a parameter inference problem involving nonlinear ODEs.
We show the sup-norm convergence of deep neural network estimators with a novel adversarial training scheme. For the nonparametric regression problem, it has been shown that an estimator using deep neural networks can achieve better performances in the sense of the $L2$-norm. In contrast, it is difficult for the neural estimator with least-squares to achieve the sup-norm convergence, due to the deep structure of neural network models. In this study, we develop an adversarial training scheme and investigate the sup-norm convergence of deep neural network estimators. First, we find that ordinary adversarial training makes neural estimators inconsistent. Second, we show that a deep neural network estimator achieves the optimal rate in the sup-norm sense by the proposed adversarial training with correction. We extend our adversarial training to general setups of a loss function and a data-generating function. Our experiments support the theoretical findings.
Diffusion models have shown incredible capabilities as generative models; indeed, they power the current state-of-the-art models on text-conditioned image generation such as Imagen and DALL-E 2. In this work we review, demystify, and unify the understanding of diffusion models across both variational and score-based perspectives. We first derive Variational Diffusion Models (VDM) as a special case of a Markovian Hierarchical Variational Autoencoder, where three key assumptions enable tractable computation and scalable optimization of the ELBO. We then prove that optimizing a VDM boils down to learning a neural network to predict one of three potential objectives: the original source input from any arbitrary noisification of it, the original source noise from any arbitrarily noisified input, or the score function of a noisified input at any arbitrary noise level. We then dive deeper into what it means to learn the score function, and connect the variational perspective of a diffusion model explicitly with the Score-based Generative Modeling perspective through Tweedie's Formula. Lastly, we cover how to learn a conditional distribution using diffusion models via guidance.
Few-shot learning (FSL) methods typically assume clean support sets with accurately labeled samples when training on novel classes. This assumption can often be unrealistic: support sets, no matter how small, can still include mislabeled samples. Robustness to label noise is therefore essential for FSL methods to be practical, but this problem surprisingly remains largely unexplored. To address mislabeled samples in FSL settings, we make several technical contributions. (1) We offer simple, yet effective, feature aggregation methods, improving the prototypes used by ProtoNet, a popular FSL technique. (2) We describe a novel Transformer model for Noisy Few-Shot Learning (TraNFS). TraNFS leverages a transformer's attention mechanism to weigh mislabeled versus correct samples. (3) Finally, we extensively test these methods on noisy versions of MiniImageNet and TieredImageNet. Our results show that TraNFS is on-par with leading FSL methods on clean support sets, yet outperforms them, by far, in the presence of label noise.
Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.
Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.