This paper presents an experimental study on radio frequency (RF) fingerprinting of Bluetooth Classic devices. Our research aims to provide a practical evaluation of the possibilities for RF fingerprinting of everyday Bluetooth connected devices that may cause privacy risks. We have built an experimental setup for recording Bluetooth connection in a radio frequency isolated environment using commercially available SDR (software defined radio) systems, extracted fingerprints of the Bluetooth radio data in the form of carrier frequency offset and scaling factor from 6 different devices, and performed k-nearest neighbors (kNN) classification achieving 84\% accuracy. The experiment demonstrates that no matter what privacy measures are being taken in the protocol layer, the physical layer leaks significant information about the device to unauthorized listeners. In the context of the ever-growing Bluetooth device market, this research serves as a clarion call for device manufacturers, regulators, and end-users to acknowledge the privacy risks posed by RF fingerprinting and lays a foundation for more sizeable Bluetooth fingerprinting analysis research.
We present Large Language Model for Mixed Reality (LLMR), a framework for the real-time creation and modification of interactive Mixed Reality experiences using LLMs. LLMR leverages novel strategies to tackle difficult cases where ideal training data is scarce, or where the design goal requires the synthesis of internal dynamics, intuitive analysis, or advanced interactivity. Our framework relies on text interaction and the Unity game engine. By incorporating techniques for scene understanding, task planning, self-debugging, and memory management, LLMR outperforms the standard GPT-4 by 4x in average error rate. We demonstrate LLMR's cross-platform interoperability with several example worlds, and evaluate it on a variety of creation and modification tasks to show that it can produce and edit diverse objects, tools, and scenes. Finally, we conducted a usability study (N=11) with a diverse set that revealed participants had positive experiences with the system and would use it again.
Instruction-finetuned Large Language Models inherit clear political leanings that have been shown to influence downstream task performance. We expand this line of research beyond the two-party system in the US and audit Llama Chat in the context of EU politics in various settings to analyze the model's political knowledge and its ability to reason in context. We adapt, i.e., further fine-tune, Llama Chat on speeches of individual euro-parties from debates in the European Parliament to reevaluate its political leaning based on the EUandI questionnaire. Llama Chat shows considerable knowledge of national parties' positions and is capable of reasoning in context. The adapted, party-specific, models are substantially re-aligned towards respective positions which we see as a starting point for using chat-based LLMs as data-driven conversational engines to assist research in political science.
This paper aims to clearly distinguish between Stochastic Gradient Descent with Momentum (SGDM) and Adam in terms of their convergence rates. We demonstrate that Adam achieves a faster convergence compared to SGDM under the condition of non-uniformly bounded smoothness. Our findings reveal that: (1) in deterministic environments, Adam can attain the known lower bound for the convergence rate of deterministic first-order optimizers, whereas the convergence rate of Gradient Descent with Momentum (GDM) has higher order dependence on the initial function value; (2) in stochastic setting, Adam's convergence rate upper bound matches the lower bounds of stochastic first-order optimizers, considering both the initial function value and the final error, whereas there are instances where SGDM fails to converge with any learning rate. These insights distinctly differentiate Adam and SGDM regarding their convergence rates. Additionally, by introducing a novel stopping-time based technique, we further prove that if we consider the minimum gradient norm during iterations, the corresponding convergence rate can match the lower bounds across all problem hyperparameters. The technique can also help proving that Adam with a specific hyperparameter scheduler is parameter-agnostic, which hence can be of independent interest.
This paper presents the MasonTigers entry to the SemEval-2024 Task 8 - Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection. The task encompasses Binary Human-Written vs. Machine-Generated Text Classification (Track A), Multi-Way Machine-Generated Text Classification (Track B), and Human-Machine Mixed Text Detection (Track C). Our best performing approaches utilize mainly the ensemble of discriminator transformer models along with sentence transformer and statistical machine learning approaches in specific cases. Moreover, zero-shot prompting and fine-tuning of FLAN-T5 are used for Track A and B.
A robust path tracker [Telen, Van Barel, Verschelde, SISC 2020] computes the radius of convergence of Newton's method, estimates the distance to the nearest path, and then applies Pad\'e approximants to predict the next point on the path. Apriori step size control is less sensitive to finely tuned tolerances than aposteriori step size control, and is therefore robust. Extrapolation methods are effective to accurately locate the singular points at the end of solution paths, as illustrated with phcpy, the scripting interface to PHCpack.
Widely present in the primary circuit of Nuclear Power Plants (NPP), Dissimilar Metal Welds (DMW) are inspected using Ultrasonic nondestructive Testing (UT) techniques to ensure the integrity of the structure and detect defects such as Stress Corrosion Cracking (SCC).In a previous collaborative research, CRIEPI and CEA have worked on the understanding of the propagation of ultrasonic waves in complex materials. Indeed, the ultrasonic propagation can be disturbed due to the anisotropic and inhomogeneous properties of the medium and the interpretation of inspection results can then be difficult. An analytical model, based on a dynamic ray theory, developed by CEA-LIST and implemented in the CIVA software had been used to predict the ultrasonic propagation in a DMW. The model evaluates the ray trajectories, the travel-time and the computation of the amplitude along the ray tube in a medium described thanks to a continuously varying description of its physical properties. In this study, the weld had been described by an analytical law of the crystallographic orientation. The simulated results of the detection of calibrated notches located in the buttering and the weld had been compared with experimental data and had shown a good agreement.The new collaborative program presented in this paper aims at detecting a real SCC defect located close to the root of the DMW. Thus, simulations have been performed for a DMW described with an analytical law and a smooth cartography of the crystallographic orientation. Furthermore, advanced ultrasonic testing methods have been used to inspect the specimen and detect the real SCC defect. Experimental and simulated results of the mock-up inspection have been compared.
This paper introduces kDGLM, an R package designed for Bayesian analysis of Generalized Dynamic Linear Models (GDLM), with a primary focus on both uni- and multivariate exponential families. Emphasizing sequential inference for time series data, the kDGLM package provides comprehensive support for fitting, smoothing, monitoring, and feed-forward interventions. The methodology employed by kDGLM, as proposed in Alves et al. (2024), seamlessly integrates with well-established techniques from the literature, particularly those used in (Gaussian) Dynamic Models. These include discount strategies, autoregressive components, transfer functions, and more. Leveraging key properties of the Kalman filter and smoothing, kDGLM exhibits remarkable computational efficiency, enabling virtually instantaneous fitting times that scale linearly with the length of the time series. This characteristic makes it an exceptionally powerful tool for the analysis of extended time series. For example, when modeling monthly hospital admissions in Brazil due to gastroenteritis from 2010 to 2022, the fitting process took a mere 0.11s. Even in a spatial-time variant of the model (27 outcomes, 110 latent states, and 156 months, yielding 17,160 parameters), the fitting time was only 4.24s. Currently, the kDGLM package supports a range of distributions, including univariate Normal (unknown mean and observational variance), bivariate Normal (unknown means, observational variances, and correlation), Poisson, Gamma (known shape and unknown mean), and Multinomial (known number of trials and unknown event probabilities). Additionally, kDGLM allows the joint modeling of multiple time series, provided each series follows one of the supported distributions. Ongoing efforts aim to continuously expand the supported distributions.
We study joint learning of Convolutional Neural Network (CNN) and Transformer for vision-language pre-training (VLPT) which aims to learn cross-modal alignments from millions of image-text pairs. State-of-the-art approaches extract salient image regions and align regions with words step-by-step. As region-based visual features usually represent parts of an image, it is challenging for existing vision-language models to fully understand the semantics from paired natural languages. In this paper, we propose SOHO to "See Out of tHe bOx" that takes a whole image as input, and learns vision-language representation in an end-to-end manner. SOHO does not require bounding box annotations which enables inference 10 times faster than region-based approaches. In particular, SOHO learns to extract comprehensive yet compact image features through a visual dictionary (VD) that facilitates cross-modal understanding. VD is designed to represent consistent visual abstractions of similar semantics. It is updated on-the-fly and utilized in our proposed pre-training task Masked Visual Modeling (MVM). We conduct experiments on four well-established vision-language tasks by following standard VLPT settings. In particular, SOHO achieves absolute gains of 2.0% R@1 score on MSCOCO text retrieval 5k test split, 1.5% accuracy on NLVR$^2$ test-P split, 6.7% accuracy on SNLI-VE test split, respectively.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
This paper reports Deep LOGISMOS approach to 3D tumor segmentation by incorporating boundary information derived from deep contextual learning to LOGISMOS - layered optimal graph image segmentation of multiple objects and surfaces. Accurate and reliable tumor segmentation is essential to tumor growth analysis and treatment selection. A fully convolutional network (FCN), UNet, is first trained using three adjacent 2D patches centered at the tumor, providing contextual UNet segmentation and probability map for each 2D patch. The UNet segmentation is then refined by Gaussian Mixture Model (GMM) and morphological operations. The refined UNet segmentation is used to provide the initial shape boundary to build a segmentation graph. The cost for each node of the graph is determined by the UNet probability maps. Finally, a max-flow algorithm is employed to find the globally optimal solution thus obtaining the final segmentation. For evaluation, we applied the method to pancreatic tumor segmentation on a dataset of 51 CT scans, among which 30 scans were used for training and 21 for testing. With Deep LOGISMOS, DICE Similarity Coefficient (DSC) and Relative Volume Difference (RVD) reached 83.2+-7.8% and 18.6+-17.4% respectively, both are significantly improved (p<0.05) compared with contextual UNet and/or LOGISMOS alone.