The increasing significance of digital twin technology across engineering and industrial domains, such as aerospace, infrastructure, and automotive, is undeniable. However, the lack of detailed application-specific information poses challenges to its seamless implementation in practical systems. Data-driven models play a crucial role in digital twins, enabling real-time updates and predictions by leveraging data and computational models. Nonetheless, the fidelity of available data and the scarcity of accurate sensor data often hinder the efficient learning of surrogate models, which serve as the connection between physical systems and digital twin models. To address this challenge, we propose a novel framework that begins by developing a robust multi-fidelity surrogate model, subsequently applied for tracking digital twin systems. Our framework integrates polynomial correlated function expansion (PCFE) with the Gaussian process (GP) to create an effective surrogate model called H-PCFE. Going a step further, we introduce deep-HPCFE, a cascading arrangement of models with different fidelities, utilizing nonlinear auto-regression schemes. These auto-regressive schemes effectively address the issue of erroneous predictions from low-fidelity models by incorporating space-dependent cross-correlations among the models. To validate the efficacy of the multi-fidelity framework, we first assess its performance in uncertainty quantification using benchmark numerical examples. Subsequently, we demonstrate its applicability in the context of digital twin systems.
We propose a dynamic sensor selection approach for deep neural networks (DNNs), which is able to derive an optimal sensor subset selection for each specific input sample instead of a fixed selection for the entire dataset. This dynamic selection is jointly learned with the task model in an end-to-end way, using the Gumbel-Softmax trick to allow the discrete decisions to be learned through standard backpropagation. We then show how we can use this dynamic selection to increase the lifetime of a wireless sensor network (WSN) by imposing constraints on how often each node is allowed to transmit. We further improve performance by including a dynamic spatial filter that makes the task-DNN more robust against the fact that it now needs to be able to handle a multitude of possible node subsets. Finally, we explain how the selection of the optimal channels can be distributed across the different nodes in a WSN. We validate this method on a use case in the context of body-sensor networks, where we use real electroencephalography (EEG) sensor data to emulate an EEG sensor network. We analyze the resulting trade-offs between transmission load and task accuracy.
Local modifications of a computational domain are often performed in order to simplify the meshing process and to reduce computational costs and memory requirements. However, removing geometrical features of a domain often introduces a non-negligible error in the solution of a differential problem in which it is defined. In this work, we extend the results from [1] by studying the case of domains containing an arbitrary number of distinct Neumann features, and by performing an analysis on Poisson's, linear elasticity, and Stokes' equations. We introduce a simple, computationally cheap, reliable, and efficient a posteriori estimator of the geometrical defeaturing error. Moreover, we also introduce a geometric refinement strategy that accounts for the defeaturing error: Starting from a fully defeatured geometry, the algorithm determines at each iteration step which features need to be added to the geometrical model to reduce the defeaturing error. These important features are then added to the (partially) defeatured geometrical model at the next iteration, until the solution attains a prescribed accuracy. A wide range of two- and three-dimensional numerical experiments are finally reported to illustrate this work.
To enhance solution accuracy and training efficiency in neural network approximation to partial differential equations, partitioned neural networks can be used as a solution surrogate instead of a single large and deep neural network defined on the whole problem domain. In such a partitioned neural network approach, suitable interface conditions or subdomain boundary conditions are combined to obtain a convergent approximate solution. However, there has been no rigorous study on the convergence and parallel computing enhancement on the partitioned neural network approach. In this paper, iterative algorithms are proposed to address these issues. Our algorithms are based on classical additive Schwarz domain decomposition methods. Numerical results are included to show the performance of the proposed iterative algorithms.
The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlled uniformly in k and an analytic part. Using this regularity, quasi-optimality of the Galerkin discretization based on Nedelec elements of order p on a mesh with mesh size h is shown under the k-explicit scale resolution condition that a) kh/p is sufficient small and b) p/\ln k is bounded from below.
Collaborative filtering (CF) has become a popular method for developing recommender systems (RSs) where ratings of a user for new items are predicted based on her past preferences and available preference information of other users. Despite the popularity of CF-based methods, their performance is often greatly limited by the sparsity of observed entries. In this study, we explore the data augmentation and refinement aspects of Maximum Margin Matrix Factorization (MMMF), a widely accepted CF technique for rating predictions, which has not been investigated before. We exploit the inherent characteristics of CF algorithms to assess the confidence level of individual ratings and propose a semi-supervised approach for rating augmentation based on self-training. We hypothesize that any CF algorithm's predictions with low confidence are due to some deficiency in the training data and hence, the performance of the algorithm can be improved by adopting a systematic data augmentation strategy. We iteratively use some of the ratings predicted with high confidence to augment the training data and remove low-confidence entries through a refinement process. By repeating this process, the system learns to improve prediction accuracy. Our method is experimentally evaluated on several state-of-the-art CF algorithms and leads to informative rating augmentation, improving the performance of the baseline approaches.
We develop the no-propagate algorithm for sampling the linear response of random dynamical systems, which are non-uniform hyperbolic deterministic systems perturbed by noise with smooth density. We first derive a Monte-Carlo type formula and then the algorithm, which is different from the ensemble (stochastic gradient) algorithms, finite-element algorithms, and fast-response algorithms; it does not involve the propagation of vectors or covectors, and only the density of the noise is differentiated, so the formula is not cursed by gradient explosion, dimensionality, or non-hyperbolicity. We demonstrate our algorithm on a tent map perturbed by noise and a chaotic neural network with 51 layers $\times$ 9 neurons. By itself, this algorithm approximates the linear response of non-hyperbolic deterministic systems, with an additional error proportional to the noise. We also discuss the potential of using this algorithm as a part of a bigger algorithm with smaller error.
This paper addresses the problem of providing robust estimators under a functional logistic regression model. Logistic regression is a popular tool in classification problems with two populations. As in functional linear regression, regularization tools are needed to compute estimators for the functional slope. The traditional methods are based on dimension reduction or penalization combined with maximum likelihood or quasi--likelihood techniques and for that reason, they may be affected by misclassified points especially if they are associated to functional covariates with atypical behaviour. The proposal given in this paper adapts some of the best practices used when the covariates are finite--dimensional to provide reliable estimations. Under regularity conditions, consistency of the resulting estimators and rates of convergence for the predictions are derived. A numerical study illustrates the finite sample performance of the proposed method and reveals its stability under different contamination scenarios. A real data example is also presented.
We analyze connections between two low rank modeling approaches from the last decade for treating dynamical data. The first one is the coherence problem (or coherent set approach), where groups of states are sought that evolve under the action of a stochastic matrix in a way maximally distinguishable from other groups. The second one is a low rank factorization approach for stochastic matrices, called Direct Bayesian Model Reduction (DBMR), which estimates the low rank factors directly from observed data. We show that DBMR results in a low rank model that is a projection of the full model, and exploit this insight to infer bounds on a quantitative measure of coherence within the reduced model. Both approaches can be formulated as optimization problems, and we also prove a bound between their respective objectives. On a broader scope, this work relates the two classical loss functions of nonnegative matrix factorization, namely the Frobenius norm and the generalized Kullback--Leibler divergence, and suggests new links between likelihood-based and projection-based estimation of probabilistic models.
In the context of adaptive remeshing, the virtual element method provides significant advantages over the finite element method. The attractive features of the virtual element method, such as the permission of arbitrary element geometries, and the seamless permission of 'hanging' nodes, have inspired many works concerning error estimation and adaptivity. However, these works have primarily focused on adaptive refinement techniques with little attention paid to adaptive coarsening (i.e. de-refinement) techniques that are required for the development of fully adaptive remeshing procedures. In this work novel indicators are proposed for the identification of patches/clusters of elements to be coarsened, along with a novel procedure to perform the coarsening. The indicators are computed over prospective patches of elements rather than on individual elements to identify the most suitable combinations of elements to coarsen. The coarsening procedure is robust and suitable for meshes of structured and unstructured/Voronoi elements. Numerical results demonstrate the high degree of efficacy of the proposed coarsening procedures and sensible mesh evolution during the coarsening process. It is demonstrated that critical mesh geometries, such as non-convex corners and holes, are preserved during coarsening, and that meshes remain fine in regions of interest to engineers, such as near singularities.
Kleene's computability theory based on the S1-S9 computation schemes constitutes a model for computing with objects of any finite type and extends Turing's 'machine model' which formalises computing with real numbers. A fundamental distinction in Kleene's framework is between normal and non-normal functionals where the former compute the associated Kleene quantifier $\exists^n$ and the latter do not. Historically, the focus was on normal functionals, but recently new non-normal functionals have been studied based on well-known theorems, the weakest among which seems to be the uncountability of the reals. These new non-normal functionals are fundamentally different from historical examples like Tait's fan functional: the latter is computable from $\exists^2$, while the former are computable in $\exists^3$ but not in weaker oracles. Of course, there is a great divide or abyss separating $\exists^2$ and $\exists^3$ and we identify slight variations of our new non-normal functionals that are again computable in $\exists^2$, i.e. fall on different sides of this abyss. Our examples are based on mainstream mathematical notions, like quasi-continuity, Baire classes, bounded variation, and semi-continuity from real analysis.