亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlled uniformly in k and an analytic part. Using this regularity, quasi-optimality of the Galerkin discretization based on Nedelec elements of order p on a mesh with mesh size h is shown under the k-explicit scale resolution condition that a) kh/p is sufficient small and b) p/\ln k is bounded from below.

相關內容

We introduce a proof-theoretic method for showing nondefinability of second-order intuitionistic connectives by quantifier-free schemata. We apply the method to confirm that Taranovsky's "realizability disjunction" connective does not admit a quantifier-free definition, and use it to obtain new results and more nuanced information about the nondefinability of Kreisel's and Po{\l}acik's unary connectives. The finitary and combinatorial nature of our method makes it more resilient to changes in metatheory than common semantic approaches, whose robustness tends to waver once we pass to non-classical and especially anti-classical settings. Furthermore, we can easily transcribe the problem-specific subproofs into univalent type theory and check them using the Agda proof assistant.

Deep learning-based numerical schemes for solving high-dimensional backward stochastic differential equations (BSDEs) have recently raised plenty of scientific interest. While they enable numerical methods to approximate very high-dimensional BSDEs, their reliability has not been studied and is thus not understood. In this work, we study uncertainty quantification (UQ) for a class of deep learning-based BSDE schemes. More precisely, we review the sources of uncertainty involved in the schemes and numerically study the impact of different sources. Usually, the standard deviation (STD) of the approximate solutions obtained from multiple runs of the algorithm with different datasets is calculated to address the uncertainty. This approach is computationally quite expensive, especially for high-dimensional problems. Hence, we develop a UQ model that efficiently estimates the STD of the approximate solution using only a single run of the algorithm. The model also estimates the mean of the approximate solution, which can be leveraged to initialize the algorithm and improve the optimization process. Our numerical experiments show that the UQ model produces reliable estimates of the mean and STD of the approximate solution for the considered class of deep learning-based BSDE schemes. The estimated STD captures multiple sources of uncertainty, demonstrating its effectiveness in quantifying the uncertainty. Additionally, the model illustrates the improved performance when comparing different schemes based on the estimated STD values. Furthermore, it can identify hyperparameter values for which the scheme achieves good approximations.

We extend classical work by Janusz Czelakowski on the closure properties of the class of matrix models of entailment relations - nowadays more commonly called multiple-conclusion logics - to the setting of non-deterministic matrices (Nmatrices), characterizing the Nmatrix models of an arbitrary logic through a generalization of the standard class operators to the non-deterministic setting. We highlight the main differences that appear in this more general setting, in particular: the possibility to obtain Nmatrix quotients using any compatible equivalence relation (not necessarily a congruence); the problem of determining when strict homomorphisms preserve the logic of a given Nmatrix; the fact that the operations of taking images and preimages cannot be swapped, which determines the exact sequence of operators that generates, from any complete semantics, the class of all Nmatrix models of a logic. Many results, on the other hand, generalize smoothly to the non-deterministic setting: we show for instance that a logic is finitely based if and only if both the class of its Nmatrix models and its complement are closed under ultraproducts. We conclude by mentioning possible developments in adapting the Abstract Algebraic Logic approach to logics induced by Nmatrices and the associated equational reasoning over non-deterministic algebras.

We present a priori error estimates for a multirate time-stepping scheme for coupled differential equations. The discretization is based on Galerkin methods in time using two different time meshes for two parts of the problem. We aim at surface coupled multiphysics problems like two-phase flows. Special focus is on the handling of the interface coupling to guarantee a coercive formulation as key to optimal order error estimates. In a sequence of increasing complexity, we begin with the coupling of two ordinary differential equations, coupled heat conduction equation, and finally a coupled Stokes problem. For this we show optimal multi-rate estimates in velocity and a suboptimal result in pressure. The a priori estimates prove that the multirate method decouples the two subproblems exactly. This is the basis for adaptive methods which can choose optimal lattices for the respective subproblems.

Recently, Sato et al. proposed an public verifiable blind quantum computation (BQC) protocol by inserting a third-party arbiter. However, it is not true public verifiable in a sense, because the arbiter is determined in advance and participates in the whole process. In this paper, a public verifiable protocol for measurement-only BQC is proposed. The fidelity between arbitrary states and the graph states of 2-colorable graphs is estimated by measuring the entanglement witnesses of the graph states,so as to verify the correctness of the prepared graph states. Compared with the previous protocol, our protocol is public verifiable in the true sense by allowing other random clients to execute the public verification. It also has greater advantages in the efficiency, where the number of local measurements is O(n^3*log {n}) and graph states' copies is O(n^2*log{n}).

Directional interpolation is a fast and efficient compression technique for high-frequency Helmholtz boundary integral equations, but requires a very large amount of storage in its original form. Algebraic recompression can significantly reduce the storage requirements and speed up the solution process accordingly. During the recompression process, weight matrices are required to correctly measure the influence of different basis vectors on the final result, and for highly accurate approximations, these weight matrices require more storage than the final compressed matrix. We present a compression method for the weight matrices and demonstrate that it introduces only a controllable error to the overall approximation. Numerical experiments show that the new method leads to a significant reduction in storage requirements.

We study in this paper the monotonicity properties of the numerical solutions to Volterra integral equations with nonincreasing completely positive kernels on nonuniform meshes. There is a duality between the complete positivity and the properties of the complementary kernel being nonnegative and nonincreasing. Based on this, we propose the ``complementary monotonicity'' to describe the nonincreasing completely positive kernels, and the ``right complementary monotone'' (R-CMM) kernels as the analogue for nonuniform meshes. We then establish the monotonicity properties of the numerical solutions inherited from the continuous equation if the discretization has the R-CMM property. Such a property seems weaker than being log-convex and there is no resctriction on the step size ratio of the discretization for the R-CMM property to hold.

Hamilton-Jacobi (HJ) partial differential equations (PDEs) have diverse applications spanning physics, optimal control, game theory, and imaging sciences. This research introduces a first-order optimization-based technique for HJ PDEs, which formulates the time-implicit update of HJ PDEs as saddle point problems. We remark that the saddle point formulation for HJ equations is aligned with the primal-dual formulation of optimal transport and potential mean-field games (MFGs). This connection enables us to extend MFG techniques and design numerical schemes for solving HJ PDEs. We employ the primal-dual hybrid gradient (PDHG) method to solve the saddle point problems, benefiting from the simple structures that enable fast computations in updates. Remarkably, the method caters to a broader range of Hamiltonians, encompassing non-smooth and spatiotemporally dependent cases. The approach's effectiveness is verified through various numerical examples in both one-dimensional and two-dimensional examples, such as quadratic and $L^1$ Hamiltonians with spatial and time dependence.

We construct and analyze a message-passing algorithm for random constraint satisfaction problems (CSPs) at large clause density, generalizing work of El Alaoui, Montanari, and Sellke for Maximum Cut [arXiv:2111.06813] through a connection between random CSPs and mean-field Ising spin glasses. For CSPs with even predicates, the algorithm asymptotically solves a stochastic optimal control problem dual to an extended Parisi variational principle. This gives an optimal fraction of satisfied constraints among algorithms obstructed by the branching overlap gap property of Huang and Sellke [arXiv:2110.07847], notably including the Quantum Approximate Optimization Algorithm and all quantum circuits on a bounded-degree architecture of up to $\epsilon \cdot \log n$ depth.

This article is concerned with a regularity analysis of parametric operator equations with a perspective on uncertainty quantification. We study the regularity of mappings between Banach spaces near branches of isolated solutions that are implicitly defined by a residual equation. Under $s$-Gevrey assumptions on on the residual equation, we establish $s$-Gevrey bounds on the Fr\'echet derivatives of the local data-to-solution mapping. This abstract framework is illustrated in a proof of regularity bounds for a semilinear elliptic partial differential equation with parametric and random field input.

北京阿比特科技有限公司