Privacy-preserving price e-negotiation (3PEN) is an important topic of secure multi-party computation (SMC) in the electronic commerce field, and the key point of its security is to guarantee the privacy of seller's and buyer's prices. In this study, a novel and efficient quantum solution to the 3PEN problem is proposed, where the oracle operation and the qubit comparator are utilized to obtain the comparative results of buyer's and seller's prices, and then quantum counting is executed to summarize the total number of products which meets the trading conditions. Analysis shows that our solution not only guarantees the correctness and the privacy of 3PEN, but also has lower communication complexity than those classical ones.
Individual modules of programmable matter participate in their system's collective behavior by expending energy to perform actions. However, not all modules may have access to the external energy source powering the system, necessitating a local and distributed strategy for supplying energy to modules. In this work, we present a general energy distribution framework for the canonical amoebot model of programmable matter that transforms energy-agnostic algorithms into energy-constrained ones with equivalent behavior and an $\mathcal{O}(n^2)$-round runtime overhead -- even under an unfair adversary -- provided the original algorithms satisfy certain conventions. We then prove that existing amoebot algorithms for leader election (ICDCN 2023) and shape formation (Distributed Computing, 2023) are compatible with this framework and show simulations of their energy-constrained counterparts, demonstrating how other unfair algorithms can be generalized to the energy-constrained setting with relatively little effort. Finally, we show that our energy distribution framework can be composed with the concurrency control framework for amoebot algorithms (Distributed Computing, 2023), allowing algorithm designers to focus on the simpler energy-agnostic, sequential setting but gain the general applicability of energy-constrained, asynchronous correctness.
Recent advances in reinforcement learning, for partially-observable Markov decision processes (POMDPs), rely on the biologically implausible backpropagation through time algorithm (BPTT) to perform gradient-descent optimisation. In this paper we propose a novel reinforcement learning algorithm that makes use of random feedback local online learning (RFLO), a biologically plausible approximation of realtime recurrent learning (RTRL) to compute the gradients of the parameters of a recurrent neural network in an online manner. By combining it with TD($\lambda$), a variant of temporaldifference reinforcement learning with eligibility traces, we create a biologically plausible, recurrent actor-critic algorithm, capable of solving discrete and continuous control tasks in POMDPs. We compare BPTT, RTRL and RFLO as well as different network architectures, and find that RFLO can perform just as well as RTRL while exceeding even BPTT in terms of complexity. The proposed method, called real-time recurrent reinforcement learning (RTRRL), serves as a model of learning in biological neural networks mimicking reward pathways in the mammalian brain.
The GraphBLAS community has demonstrated the power of linear algebra-leveraged graph algorithms, such as matrix-vector products for breadth-first search (BFS) traversals. This paper investigates the algebraic conditions needed for such computations when working with directed hypergraphs, represented by incidence arrays with entries from an arbitrary value set with binary addition and multiplication operations. Our results show the one-step BFS traversal is equivalent to requiring specific algebraic properties of those operations. Assuming identity elements 0, 1 for operations, we show that the two operations must be zero-sum-free, zero-divisor-free, and 0 must be an annihilator under multiplication. Additionally, associativity and commutativity are shown to be necessary and sufficient for independence of the one-step BFS computation from several arbitrary conventions. These results aid in application and algorithm development by determining the efficacy of a value set in computations.
Modern learning-based visual feature extraction networks perform well in intra-domain localization, however, their performance significantly declines when image pairs are captured across long-term visual domain variations, such as different seasonal and daytime variations. In this paper, our first contribution is a benchmark to investigate the performance impact of long-term variations on visual localization. We conduct a thorough analysis of the performance of current state-of-the-art feature extraction networks under various domain changes and find a significant performance gap between intra- and cross-domain localization. We investigate different methods to close this gap by improving the supervision of modern feature extractor networks. We propose a novel data-centric method, Implicit Cross-Domain Correspondences (iCDC). iCDC represents the same environment with multiple Neural Radiance Fields, each fitting the scene under individual visual domains. It utilizes the underlying 3D representations to generate accurate correspondences across different long-term visual conditions. Our proposed method enhances cross-domain localization performance, significantly reducing the performance gap. When evaluated on popular long-term localization benchmarks, our trained networks consistently outperform existing methods. This work serves as a substantial stride toward more robust visual localization pipelines for long-term deployments, and opens up research avenues in the development of long-term invariant descriptors.
We propose a new active learning approach for efficiently estimating the geographic range of a species from a limited number of on the ground observations. We model the range of an unmapped species of interest as the weighted combination of estimated ranges obtained from a set of different species. We show that it is possible to generate this candidate set of ranges by using models that have been trained on large weakly supervised community collected observation data. From this, we develop a new active querying approach that sequentially selects geographic locations to visit that best reduce our uncertainty over an unmapped species' range. We conduct a detailed evaluation of our approach and compare it to existing active learning methods using an evaluation dataset containing expert-derived ranges for one thousand species. Our results demonstrate that our method outperforms alternative active learning methods and approaches the performance of end-to-end trained models, even when only using a fraction of the data. This highlights the utility of active learning via transfer learned spatial representations for species range estimation. It also emphasizes the value of leveraging emerging large-scale crowdsourced datasets, not only for modeling a species' range, but also for actively discovering them.
In this paper, we aim to build a novel bandits algorithm that is capable of fully harnessing the power of multi-dimensional data and the inherent non-linearity of reward functions to provide high-usable and accountable decision-making services. To this end, we introduce a generalized low-rank tensor contextual bandits model in which an action is formed from three feature vectors, and thus can be represented by a tensor. In this formulation, the reward is determined through a generalized linear function applied to the inner product of the action's feature tensor and a fixed but unknown parameter tensor with a low tubal rank. To effectively achieve the trade-off between exploration and exploitation, we introduce a novel algorithm called "Generalized Low-Rank Tensor Exploration Subspace then Refine" (G-LowTESTR). This algorithm first collects raw data to explore the intrinsic low-rank tensor subspace information embedded in the decision-making scenario, and then converts the original problem into an almost lower-dimensional generalized linear contextual bandits problem. Rigorous theoretical analysis shows that the regret bound of G-LowTESTR is superior to those in vectorization and matricization cases. We conduct a series of simulations and real data experiments to further highlight the effectiveness of G-LowTESTR, leveraging its ability to capitalize on the low-rank tensor structure for enhanced learning.
In the context of the long-tail scenario, models exhibit a strong demand for high-quality data. Data-centric approaches aim to enhance both the quantity and quality of data to improve model performance. Among these approaches, information augmentation has been progressively introduced as a crucial category. It achieves a balance in model performance by augmenting the richness and quantity of samples in the tail classes. However, there is currently a lack of research into the underlying mechanisms explaining the effectiveness of information augmentation methods. Consequently, the utilization of information augmentation in long-tail recognition tasks relies heavily on empirical and intricate fine-tuning. This work makes two primary contributions. Firstly, we approach the problem from the perspectives of feature diversity and distribution shift, introducing the concept of Feature Diversity Gain (FDG) to elucidate why information augmentation is effective. We find that the performance of information augmentation can be explained by FDG, and its performance peaks when FDG achieves an appropriate balance. Experimental results demonstrate that by using FDG to select augmented data, we can further enhance model performance without the need for any modifications to the model's architecture. Thus, data-centric approaches hold significant potential in the field of long-tail recognition, beyond the development of new model structures. Furthermore, we systematically introduce the core components and fundamental tasks of a data-centric long-tail learning framework for the first time. These core components guide the implementation and deployment of the system, while the corresponding fundamental tasks refine and expand the research area.
Federated optimization studies the problem of collaborative function optimization among multiple clients (e.g. mobile devices or organizations) under the coordination of a central server. Since the data is collected separately by each client and always remains decentralized, federated optimization preserves data privacy and allows for large-scale computing, which makes it a promising decentralized machine learning paradigm. Though it is often deployed for tasks that are online in nature, e.g., next-word prediction on keyboard apps, most works formulate it as an offline problem. The few exceptions that consider federated bandit optimization are limited to very simplistic function classes, e.g., linear, generalized linear, or non-parametric function class with bounded RKHS norm, which severely hinders its practical usage. In this paper, we propose a new algorithm, named Fed-GO-UCB, for federated bandit optimization with generic non-linear objective function. Under some mild conditions, we rigorously prove that Fed-GO-UCB is able to achieve sub-linear rate for both cumulative regret and communication cost. At the heart of our theoretical analysis are distributed regression oracle and individual confidence set construction, which can be of independent interests. Empirical evaluations also demonstrate the effectiveness of the proposed algorithm.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.