Social media platforms serve as accessible outlets for individuals to express their thoughts and experiences, resulting in an influx of user-generated data spanning all age groups. While these platforms enable free expression, they also present significant challenges, including the proliferation of hate speech and offensive content. Such objectionable language disrupts objective discourse and can lead to radicalization of debates, ultimately threatening democratic values. Consequently, organizations have taken steps to monitor and curb abusive behavior, necessitating automated methods for identifying suspicious posts. This paper contributes to Hate Speech and Offensive Content Identification in English and Indo-Aryan Languages (HASOC) 2023 shared tasks track. We, team Z-AGI Labs, conduct a comprehensive comparative analysis of hate speech classification across five distinct languages: Bengali, Assamese, Bodo, Sinhala, and Gujarati. Our study encompasses a wide range of pre-trained models, including Bert variants, XLM-R, and LSTM models, to assess their performance in identifying hate speech across these languages. Results reveal intriguing variations in model performance. Notably, Bert Base Multilingual Cased emerges as a strong performer across languages, achieving an F1 score of 0.67027 for Bengali and 0.70525 for Assamese. At the same time, it significantly outperforms other models with an impressive F1 score of 0.83009 for Bodo. In Sinhala, XLM-R stands out with an F1 score of 0.83493, whereas for Gujarati, a custom LSTM-based model outshined with an F1 score of 0.76601. This study offers valuable insights into the suitability of various pre-trained models for hate speech detection in multilingual settings. By considering the nuances of each, our research contributes to an informed model selection for building robust hate speech detection systems.
Video diffusion models has been gaining increasing attention for its ability to produce videos that are both coherent and of high fidelity. However, the iterative denoising process makes it computationally intensive and time-consuming, thus limiting its applications. Inspired by the Consistency Model (CM) that distills pretrained image diffusion models to accelerate the sampling with minimal steps and its successful extension Latent Consistency Model (LCM) on conditional image generation, we propose AnimateLCM, allowing for high-fidelity video generation within minimal steps. Instead of directly conducting consistency learning on the raw video dataset, we propose a decoupled consistency learning strategy that decouples the distillation of image generation priors and motion generation priors, which improves the training efficiency and enhance the generation visual quality. Additionally, to enable the combination of plug-and-play adapters in stable diffusion community to achieve various functions (e.g., ControlNet for controllable generation). we propose an efficient strategy to adapt existing adapters to our distilled text-conditioned video consistency model or train adapters from scratch without harming the sampling speed. We validate the proposed strategy in image-conditioned video generation and layout-conditioned video generation, all achieving top-performing results. Experimental results validate the effectiveness of our proposed method. Code and weights will be made public. More details are available at //github.com/G-U-N/AnimateLCM.
The Internet of Things (IoT) has seen remarkable advancements in recent years, leading to a paradigm shift in the digital landscape. However, these technological strides have also brought new challenges, particularly in terms of cybersecurity. IoT devices are inherently connected to the internet, which makes them more vulnerable to attack. In addition, IoT services often handle sensitive user data, which could be misused by malicious actors or unauthorized service providers. As more mainstream service providers emerge without uniform regulations, these security risks are expected to escalate exponentially. The task of maintaining the security of IoT devices while they interact with cloud services is also challenging. Newer IoT services, especially those developed and deployed via Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS) models, pose additional security threats. Although IoT devices are becoming more affordable and ubiquitous, their growing complexity could expose users to heightened security and privacy risks. This paper highlights these pressing security concerns associated with the widespread adoption of IoT devices and services. We propose potential solutions to bridge the existing security gaps and expect future challenges. Our approach entails a comprehensive exploration of the key security challenges that IoT services are currently facing. We also suggest proactive strategies to mitigate these risks, strengthening the overall security of IoT devices and services.
This study focuses on media bias detection, crucial in today's era of influential social media platforms shaping individual attitudes and opinions. In contrast to prior work that primarily relies on training specific models tailored to particular datasets, resulting in limited adaptability and subpar performance on out-of-domain data, we introduce a general bias detection framework, IndiVec, built upon large language models. IndiVec begins by constructing a fine-grained media bias database, leveraging the robust instruction-following capabilities of large language models and vector database techniques. When confronted with new input for bias detection, our framework automatically selects the most relevant indicator from the vector database and employs majority voting to determine the input's bias label. IndiVec excels compared to previous methods due to its adaptability (demonstrating consistent performance across diverse datasets from various sources) and explainability (providing explicit top-k indicators to interpret bias predictions). Experimental results on four political bias datasets highlight IndiVec's significant superiority over baselines. Furthermore, additional experiments and analysis provide profound insights into the framework's effectiveness.
The increasing reliance on AI-driven solutions, particularly Large Language Models (LLMs) like the GPT series, for information retrieval highlights the critical need for their factuality and fairness, especially amidst the rampant spread of misinformation and disinformation online. Our study evaluates the factual accuracy, stability, and biases in widely adopted GPT models, including GPT-3.5 and GPT-4, contributing to reliability and integrity of AI-mediated information dissemination. We introduce 'Global-Liar,' a dataset uniquely balanced in terms of geographic and temporal representation, facilitating a more nuanced evaluation of LLM biases. Our analysis reveals that newer iterations of GPT models do not always equate to improved performance. Notably, the GPT-4 version from March demonstrates higher factual accuracy than its subsequent June release. Furthermore, a concerning bias is observed, privileging statements from the Global North over the Global South, thus potentially exacerbating existing informational inequities. Regions such as Africa and the Middle East are at a disadvantage, with much lower factual accuracy. The performance fluctuations over time suggest that model updates may not consistently benefit all regions equally. Our study also offers insights into the impact of various LLM configuration settings, such as binary decision forcing, model re-runs and temperature, on model's factuality. Models constrained to binary (true/false) choices exhibit reduced factuality compared to those allowing an 'unclear' option. Single inference at a low temperature setting matches the reliability of majority voting across various configurations. The insights gained highlight the need for culturally diverse and geographically inclusive model training and evaluation. This approach is key to achieving global equity in technology, distributing AI benefits fairly worldwide.
In the evolving landscape of online communication, moderating hate speech (HS) presents an intricate challenge, compounded by the multimodal nature of digital content. This comprehensive survey delves into the recent strides in HS moderation, spotlighting the burgeoning role of large language models (LLMs) and large multimodal models (LMMs). Our exploration begins with a thorough analysis of current literature, revealing the nuanced interplay between textual, visual, and auditory elements in propagating HS. We uncover a notable trend towards integrating these modalities, primarily due to the complexity and subtlety with which HS is disseminated. A significant emphasis is placed on the advances facilitated by LLMs and LMMs, which have begun to redefine the boundaries of detection and moderation capabilities. We identify existing gaps in research, particularly in the context of underrepresented languages and cultures, and the need for solutions to handle low-resource settings. The survey concludes with a forward-looking perspective, outlining potential avenues for future research, including the exploration of novel AI methodologies, the ethical governance of AI in moderation, and the development of more nuanced, context-aware systems. This comprehensive overview aims to catalyze further research and foster a collaborative effort towards more sophisticated, responsible, and human-centric approaches to HS moderation in the digital era.\footnote{ \textcolor{red}{WARNING: This paper contains offensive examples.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.