亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Streaming submodular maximization is a natural model for the task of selecting a representative subset from a large-scale dataset. If datapoints have sensitive attributes such as gender or race, it becomes important to enforce fairness to avoid bias and discrimination. This has spurred significant interest in developing fair machine learning algorithms. Recently, such algorithms have been developed for monotone submodular maximization under a cardinality constraint. In this paper, we study the natural generalization of this problem to a matroid constraint. We give streaming algorithms as well as impossibility results that provide trade-offs between efficiency, quality and fairness. We validate our findings empirically on a range of well-known real-world applications: exemplar-based clustering, movie recommendation, and maximum coverage in social networks.

相關內容

Stringent line-of-sight demands necessitated by the fast attenuating nature of millimeter waves (mmWaves) through obstacles pose one of the central problems of next generation wireless networks. These mmWave links are easily disrupted due to obstacles, including vehicles and pedestrians, which cause degradation in link quality and even link failure. Dynamic obstacles are usually tracked by dedicated tracking hardware like RGB-D cameras, which usually have small ranges, and hence lead to prohibitively increased deployment costs to achieve complete coverage of the deployment area. In this manuscript, we propose an altogether different approach to track multiple dynamic obstacles in an mmWave network, solely based on short-term historical link failure information, without resorting to any dedicated tracking hardware. After proving that the said problem is NP-complete, we employ a greedy set-cover based approach to solve it. Using the obtained trajectories, we perform proactive handoffs for at-risk links. We compare our approach with an RGB-D camera-based approach and show that our approach provides better tracking and handoff performances when the camera coverage is low to moderate, which is often the case in real deployment scenarios.

Linear State Space Models (SSMs) have demonstrated strong performance in a variety of sequence modeling tasks due to their efficient encoding of the recurrent structure. However, in more comprehensive tasks like language modeling and machine translation, self-attention-based models still outperform SSMs. Hybrid models employing both SSM and self-attention generally show promising performance, but current approaches apply attention modules statically and uniformly to all elements in the input sequences, leading to sub-optimal quality-efficiency trade-offs. In this work, we introduce Sparse Modular Activation (SMA), a general mechanism enabling neural networks to sparsely and dynamically activate sub-modules for sequence elements in a differentiable manner. Through allowing each element to skip non-activated sub-modules, SMA reduces computation and memory consumption at both training and inference stages of sequence modeling. As a specific instantiation of SMA, we design a novel neural architecture, SeqBoat, which employs SMA to sparsely activate a Gated Attention Unit (GAU) based on the state representations learned from an SSM. By constraining the GAU to only conduct local attention on the activated inputs, SeqBoat can achieve linear inference complexity with theoretically infinite attention span, and provide substantially better quality-efficiency trade-off than the chunking-based models. With experiments on a wide range of tasks, including language modeling, speech classification and long-range arena, SeqBoat brings new state-of-the-art results among hybrid models with linear complexity and reveals the amount of attention needed for each task through the learned sparse activation patterns.

The feedback that users provide through their choices (e.g., clicks, purchases) is one of the most common types of data readily available for training search and recommendation algorithms. However, myopically training systems based on choice data may only improve short-term engagement, but not the long-term sustainability of the platform and the long-term benefits to its users, content providers, and other stakeholders. In this paper, we thus develop a new framework in which decision makers (e.g., platform operators, regulators, users) can express long-term goals for the behavior of the platform (e.g., fairness, revenue distribution, legal requirements). These goals take the form of exposure or impact targets that go well beyond individual sessions, and we provide new control-based algorithms to achieve these goals. In particular, the controllers are designed to achieve the stated long-term goals with minimum impact on short-term engagement. Beyond the principled theoretical derivation of the controllers, we evaluate the algorithms on both synthetic and real-world data. While all controllers perform well, we find that they provide interesting trade-offs in efficiency, robustness, and the ability to plan ahead.

Governments and industries have widely adopted differential privacy as a measure to protect users' sensitive data, creating the need for new implementations of differentially private algorithms. In order to properly test and audit these algorithms, a suite of tools for testing the property of differential privacy is needed. In this work we expand this testing suite and introduce R\'enyiTester, an algorithm that can verify if a mechanism is R\'enyi differentially private. Our algorithm computes computes a lower bound of the R\'enyi divergence between the distributions of a mechanism on neighboring datasets, only requiring black-box access to samples from the audited mechanism. We test this approach on a variety of pure and R\'enyi differentially private mechanisms with diverse output spaces and show that R\'enyiTester detects bugs in mechanisms' implementations and design flaws. While detecting that a general mechanism is differentially private is known to be NP hard, we empirically show that tools like R\'enyiTester provide a way for researchers and engineers to decrease the risk of deploying mechanisms that expose users' privacy.

As digital transformation continues, enterprises are generating, managing, and storing vast amounts of data, while artificial intelligence technology is rapidly advancing. However, it brings challenges in information security and data security. Data security refers to the protection of digital information from unauthorized access, damage, theft, etc. throughout its entire life cycle. With the promulgation and implementation of data security laws and the emphasis on data security and data privacy by organizations and users, Privacy-preserving technology represented by federated learning has a wide range of application scenarios. Federated learning is a distributed machine learning computing framework that allows multiple subjects to train joint models without sharing data to protect data privacy and solve the problem of data islands. However, the data among multiple subjects are independent of each other, and the data differences in quality may cause fairness issues in federated learning modeling, such as data bias among multiple subjects, resulting in biased and discriminatory models. Therefore, we propose DBFed, a debiasing federated learning framework based on domain-independent, which mitigates model bias by explicitly encoding sensitive attributes during client-side training. This paper conducts experiments on three real datasets and uses five evaluation metrics of accuracy and fairness to quantify the effect of the model. Most metrics of DBFed exceed those of the other three comparative methods, fully demonstrating the debiasing effect of DBFed.

This work, for the first time, introduces two constant factor approximation algorithms with linear query complexity for non-monotone submodular maximization over a ground set of size $n$ subject to a knapsack constraint, $\mathsf{DLA}$ and $\mathsf{RLA}$. $\mathsf{DLA}$ is a deterministic algorithm that provides an approximation factor of $6+\epsilon$ while $\mathsf{RLA}$ is a randomized algorithm with an approximation factor of $4+\epsilon$. Both run in $O(n \log(1/\epsilon)/\epsilon)$ query complexity. The key idea to obtain a constant approximation ratio with linear query lies in: (1) dividing the ground set into two appropriate subsets to find the near-optimal solution over these subsets with linear queries, and (2) combining a threshold greedy with properties of two disjoint sets or a random selection process to improve solution quality. In addition to the theoretical analysis, we have evaluated our proposed solutions with three applications: Revenue Maximization, Image Summarization, and Maximum Weighted Cut, showing that our algorithms not only return comparative results to state-of-the-art algorithms but also require significantly fewer queries.

Federated learning (FL) has garnered considerable attention due to its privacy-preserving feature. Nonetheless, the lack of freedom in managing user data can lead to group fairness issues, where models might be biased towards sensitive factors such as race or gender, even if they are trained using a legally compliant process. To redress this concern, this paper proposes a novel FL algorithm designed explicitly to address group fairness issues. We show empirically on CelebA and ImSitu datasets that the proposed method can improve fairness both quantitatively and qualitatively with minimal loss in accuracy in the presence of statistical heterogeneity and with different numbers of clients. Besides improving fairness, the proposed FL algorithm is compatible with local differential privacy (LDP), has negligible communication costs, and results in minimal overhead when migrating existing FL systems from the common FL protocol such as FederatedAveraging (FedAvg). We also provide the theoretical convergence rate guarantee for the proposed algorithm and the required noise level of the Gaussian mechanism to achieve desired LDP. This innovative approach holds significant potential to enhance the fairness and effectiveness of FL systems, particularly in sensitive applications such as healthcare or criminal justice.

Maximum weight independent set (MWIS) admits a $\frac1k$-approximation in inductively $k$-independent graphs and a $\frac{1}{2k}$-approximation in $k$-perfectly orientable graphs. These are a a parameterized class of graphs that generalize $k$-degenerate graphs, chordal graphs, and intersection graphs of various geometric shapes such as intervals, pseudo-disks, and several others. We consider a generalization of MWIS to a submodular objective. Given a graph $G=(V,E)$ and a non-negative submodular function $f: 2^V \rightarrow \mathbb{R}_+$, the goal is to approximately solve $\max_{S \in \mathcal{I}_G} f(S)$ where $\mathcal{I}_G$ is the set of independent sets of $G$. We obtain an $\Omega(\frac1k)$-approximation for this problem in the two mentioned graph classes. The first approach is via the multilinear relaxation framework and a simple contention resolution scheme, and this results in a randomized algorithm with approximation ratio at least $\frac{1}{e(k+1)}$. This approach also yields parallel (or low-adaptivity) approximations. Motivated by the goal of designing efficient and deterministic algorithms, we describe two other algorithms for inductively $k$-independent graphs that are inspired by work on streaming algorithms: a preemptive greedy algorithm and a primal-dual algorithm. In addition to being simpler and faster, these algorithms, in the monotone submodular case, yield the first deterministic constant factor approximations for various special cases that have been previously considered such as intersection graphs of intervals, disks and pseudo-disks.

Modern DDoS defense systems rely on probabilistic monitoring algorithms to identify flows that exceed a volume threshold and should thus be penalized. Commonly, classic sketch algorithms are considered sufficiently accurate for usage in DDoS defense. However, as we show in this paper, these algorithms achieve poor detection accuracy under burst-flood attacks, i.e., volumetric DDoS attacks composed of a swarm of medium-rate sub-second traffic bursts. Under this challenging attack pattern, traditional sketch algorithms can only detect a high share of the attack bursts by incurring a large number of false positives. In this paper, we present ALBUS, a probabilistic monitoring algorithm that overcomes the inherent limitations of previous schemes: ALBUS is highly effective at detecting large bursts while reporting no legitimate flows, and therefore improves on prior work regarding both recall and precision. Besides improving accuracy, ALBUS scales to high traffic rates, which we demonstrate with an FPGA implementation, and is suitable for programmable switches, which we showcase with a P4 implementation.

The increasing concerns regarding the privacy of machine learning models have catalyzed the exploration of machine unlearning, i.e., a process that removes the influence of training data on machine learning models. This concern also arises in the realm of federated learning, prompting researchers to address the federated unlearning problem. However, federated unlearning remains challenging. Existing unlearning methods can be broadly categorized into two approaches, i.e., exact unlearning and approximate unlearning. Firstly, implementing exact unlearning, which typically relies on the partition-aggregation framework, in a distributed manner does not improve time efficiency theoretically. Secondly, existing federated (approximate) unlearning methods suffer from imprecise data influence estimation, significant computational burden, or both. To this end, we propose a novel federated unlearning framework based on incremental learning, which is independent of specific models and federated settings. Our framework differs from existing federated unlearning methods that rely on approximate retraining or data influence estimation. Instead, we leverage new memories to overwrite old ones, imitating the process of \textit{active forgetting} in neurology. Specifically, the model, intended to unlearn, serves as a student model that continuously learns from randomly initiated teacher models. To preserve catastrophic forgetting of non-target data, we utilize elastic weight consolidation to elastically constrain weight change. Extensive experiments on three benchmark datasets demonstrate the efficiency and effectiveness of our proposed method. The result of backdoor attacks demonstrates that our proposed method achieves satisfying completeness.

北京阿比特科技有限公司