The goal of this work is Active Speaker Detection (ASD), a task to determine whether a person is speaking or not in a series of video frames. Previous works have dealt with the task by exploring network architectures while learning effective representations has been less explored. In this work, we propose TalkNCE, a novel talk-aware contrastive loss. The loss is only applied to part of the full segments where a person on the screen is actually speaking. This encourages the model to learn effective representations through the natural correspondence of speech and facial movements. Our loss can be jointly optimized with the existing objectives for training ASD models without the need for additional supervision or training data. The experiments demonstrate that our loss can be easily integrated into the existing ASD frameworks, improving their performance. Our method achieves state-of-the-art performances on AVA-ActiveSpeaker and ASW datasets.
Text-to-SQL aims to automate the process of generating SQL queries on a database from natural language text. In this work, we propose "SQLPrompt", tailored to improve the few-shot prompting capabilities of Text-to-SQL for Large Language Models (LLMs). Our methods include innovative prompt design, execution-based consistency decoding strategy which selects the SQL with the most consistent execution outcome among other SQL proposals, and a method that aims to improve performance by diversifying the SQL proposals during consistency selection with different prompt designs ("MixPrompt") and foundation models ("MixLLMs"). We show that \emph{SQLPrompt} outperforms previous approaches for in-context learning with few labeled data by a large margin, closing the gap with finetuning state-of-the-art with thousands of labeled data.
Diffusion Models (DMs) are state-of-the-art generative models that learn a reversible corruption process from iterative noise addition and denoising. They are the backbone of many generative AI applications, such as text-to-image conditional generation. However, recent studies have shown that basic unconditional DMs (e.g., DDPM and DDIM) are vulnerable to backdoor injection, a type of output manipulation attack triggered by a maliciously embedded pattern at model input. This paper presents a unified backdoor attack framework (VillanDiffusion) to expand the current scope of backdoor analysis for DMs. Our framework covers mainstream unconditional and conditional DMs (denoising-based and score-based) and various training-free samplers for holistic evaluations. Experiments show that our unified framework facilitates the backdoor analysis of different DM configurations and provides new insights into caption-based backdoor attacks on DMs. Our code is available on GitHub: \url{//github.com/IBM/villandiffusion}
Delivery of items from the producer to the consumer has experienced significant growth over the past decade and has been greatly fueled by the recent pandemic. Amazon Fresh, Shopify, UberEats, InstaCart, and DoorDash are rapidly growing and are sharing the same business model of consumer items or food delivery. Existing food delivery methods are sub-optimal because each delivery is individually optimized to go directly from the producer to the consumer via the shortest time path. We observe a significant scope for reducing the costs associated with completing deliveries under the current model. We model our food delivery problem as a multi-objective optimization, where consumer satisfaction and delivery costs, both, need to be optimized. Taking inspiration from the success of ride-sharing in the taxi industry, we propose DeliverAI - a reinforcement learning-based path-sharing algorithm. Unlike previous attempts for path-sharing, DeliverAI can provide real-time, time-efficient decision-making using a Reinforcement learning-enabled agent system. Our novel agent interaction scheme leverages path-sharing among deliveries to reduce the total distance traveled while keeping the delivery completion time under check. We generate and test our methodology vigorously on a simulation setup using real data from the city of Chicago. Our results show that DeliverAI can reduce the delivery fleet size by 12\%, the distance traveled by 13%, and achieve 50% higher fleet utilization compared to the baselines.
Linear Recurrence has proven to be a powerful tool for modeling long sequences efficiently. In this work, we show that existing models fail to take full advantage of its potential. Motivated by this finding, we develop GateLoop, a foundational sequence model that generalizes linear recurrent models such as S4, S5, LRU and RetNet, by employing data-controlled state transitions. Utilizing this theoretical advance, GateLoop empirically outperforms existing models for auto-regressive language modeling. Our method comes with a low-cost $O(l)$ recurrent mode and an efficient $O(l \log_{2} l)$ parallel mode making use of highly optimized associative scan implementations. Furthermore, we derive an $O(l^2)$ surrogate attention mode, revealing remarkable implications for Transformer and recently proposed architectures. Specifically, we prove that our approach can be interpreted as providing data-controlled relative-positional information to Attention. While many existing models solely rely on data-controlled cumulative sums for context aggregation, our findings suggest that incorporating data-controlled complex cumulative products may be a crucial step towards more powerful sequence models.
LLMs have demonstrated impressive zero-shot performance on NLP tasks thanks to the knowledge they acquired in their training. In multiple-choice QA tasks, the LM probabilities are used as an imperfect measure of the plausibility of each answer choice. One of the major limitations of the basic score is that it treats all words as equally important. We propose CASE, a Commonsense-Augmented Score with an Expanded Answer Space. CASE addresses this limitation by assigning importance weights for individual words based on their semantic relations to other words in the input. The dynamic weighting approach outperforms basic LM scores, not only because it reduces noise from unimportant words, but also because it informs the model of implicit commonsense knowledge that may be useful for answering the question. We then also follow prior work in expanding the answer space by generating lexically-divergent answers that are conceptually-similar to the choices. When combined with answer space expansion, our method outperforms strong baselines on 5 commonsense benchmarks. We further show these two approaches are complementary and may be especially beneficial when using smaller LMs.
Pre-trained Vision-Language Models (VLMs), such as CLIP, have shown enhanced performance across a range of tasks that involve the integration of visual and linguistic modalities. When CLIP is used for depth estimation tasks, the patches, divided from the input images, can be combined with a series of semantic descriptions of the depth information to obtain similarity results. The coarse estimation of depth is then achieved by weighting and summing the depth values, called depth bins, corresponding to the predefined semantic descriptions. The zero-shot approach circumvents the computational and time-intensive nature of traditional fully-supervised depth estimation methods. However, this method, utilizing fixed depth bins, may not effectively generalize as images from different scenes may exhibit distinct depth distributions. To address this challenge, we propose a few-shot-based method which learns to adapt the VLMs for monocular depth estimation to balance training costs and generalization capabilities. Specifically, it assigns different depth bins for different scenes, which can be selected by the model during inference. Additionally, we incorporate learnable prompts to preprocess the input text to convert the easily human-understood text into easily model-understood vectors and further enhance the performance. With only one image per scene for training, our extensive experiment results on the NYU V2 and KITTI dataset demonstrate that our method outperforms the previous state-of-the-art method by up to 10.6\% in terms of MARE.
In Member Inference (MI) attacks, the adversary try to determine whether an instance is used to train a machine learning (ML) model. MI attacks are a major privacy concern when using private data to train ML models. Most MI attacks in the literature take advantage of the fact that ML models are trained to fit the training data well, and thus have very low loss on training instances. Most defenses against MI attacks therefore try to make the model fit the training data less well. Doing so, however, generally results in lower accuracy. We observe that training instances have different degrees of vulnerability to MI attacks. Most instances will have low loss even when not included in training. For these instances, the model can fit them well without concerns of MI attacks. An effective defense only needs to (possibly implicitly) identify instances that are vulnerable to MI attacks and avoids overfitting them. A major challenge is how to achieve such an effect in an efficient training process. Leveraging two distinct recent advancements in representation learning: counterfactually-invariant representations and subspace learning methods, we introduce a novel Membership-Invariant Subspace Training (MIST) method to defend against MI attacks. MIST avoids overfitting the vulnerable instances without significant impact on other instances. We have conducted extensive experimental studies, comparing MIST with various other state-of-the-art (SOTA) MI defenses against several SOTA MI attacks. We find that MIST outperforms other defenses while resulting in minimal reduction in testing accuracy.
We introduce Voyager, the first LLM-powered embodied lifelong learning agent in Minecraft that continuously explores the world, acquires diverse skills, and makes novel discoveries without human intervention. Voyager consists of three key components: 1) an automatic curriculum that maximizes exploration, 2) an ever-growing skill library of executable code for storing and retrieving complex behaviors, and 3) a new iterative prompting mechanism that incorporates environment feedback, execution errors, and self-verification for program improvement. Voyager interacts with GPT-4 via blackbox queries, which bypasses the need for model parameter fine-tuning. The skills developed by Voyager are temporally extended, interpretable, and compositional, which compounds the agent's abilities rapidly and alleviates catastrophic forgetting. Empirically, Voyager shows strong in-context lifelong learning capability and exhibits exceptional proficiency in playing Minecraft. It obtains 3.3x more unique items, travels 2.3x longer distances, and unlocks key tech tree milestones up to 15.3x faster than prior SOTA. Voyager is able to utilize the learned skill library in a new Minecraft world to solve novel tasks from scratch, while other techniques struggle to generalize. We open-source our full codebase and prompts at //voyager.minedojo.org/.
Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.