亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem of quickest detection of a change in the distribution of a sequence of independent observations is considered. It is assumed that the pre-change distribution is known (accurately estimated), while the only information about the post-change distribution is through a (small) set of labeled data. This post-change data is used in a data-driven minimax robust framework, where an uncertainty set for the post-change distribution is constructed using the Wasserstein distance from the empirical distribution of the data. The robust change detection problem is studied in an asymptotic setting where the mean time to false alarm goes to infinity, for which the least favorable post-change distribution within the uncertainty set is the one that minimizes the Kullback-Leibler divergence between the post- and the pre-change distributions. It is shown that the density corresponding to the least favorable distribution is an exponentially tilted version of the pre-change density and can be calculated efficiently. A Cumulative Sum (CuSum) test based on the least favorable distribution, which is referred to as the distributionally robust (DR) CuSum test, is then shown to be asymptotically robust. The results are extended to the case where the post-change uncertainty set is a finite union of multiple Wasserstein uncertainty sets, corresponding to multiple post-change scenarios, each with its own labeled data. The proposed method is validated using synthetic and real data examples.

相關內容

Causality in distributed systems is a concept that has long been explored and numerous approaches have been made to use causality as a way to trace distributed system execution. Traditional approaches usually used system profiling and newer approaches profiled clocks of systems to detect failures and construct timelines that caused those failures. Since the advent of logical clocks, these profiles have become more and more accurate with ways to characterize concurrency and distributions, with accurate diagrams for message passing. Vector clocks addressed the shortcomings of using traditional logical clocks, by storing information about other processes in the system as well. Hybrid vector clocks are a novel approach to this concept where clocks need not store all the process information. Rather, we store information of processes within an acceptable skew of the focused process. This gives us an efficient way of profiling with substantially reduced costs to the system. Building on this idea, we propose the idea of building causal traces using information generated from the hybrid vector clock. The hybrid vector clock would provide us with a strong sense of concurrency and distribution, and we theorize that all the information generated from the clock is sufficient to develop a causal trace for debugging. We post-process and parse the clocks generated from an execution trace to develop a swimlane on a web interface, that traces the points of failure of a distributed system. We also provide an API to reuse this concept for any generic distributed system framework.

We investigate the dimension-parametric complexity of the reachability problem in vector addition systems with states (VASS) and its extension with pushdown stack (pushdown VASS). Up to now, the problem is known to be $\mathcal{F}_k$-hard for VASS of dimension $3k+2$ (the complexity class $\mathcal{F}_k$ corresponds to the $k$th level of the fast-growing hierarchy), and no essentially better bound is known for pushdown VASS. We provide a new construction that improves the lower bound for VASS: $\mathcal{F}_k$-hardness in dimension $2k+3$. Furthermore, building on our new insights we show a new lower bound for pushdown VASS: $\mathcal{F}_k$-hardness in dimension $\frac k 2 + 4$. This dimension-parametric lower bound is strictly stronger than the upper bound for VASS, which suggests that the (still unknown) complexity of the reachability problem in pushdown VASS is higher than in plain VASS (where it is Ackermann-complete).

With the emergence of Artificial Intelligence, numerical algorithms are moving towards more approximate approaches. For methods such as PCA or diffusion maps, it is necessary to compute eigenvalues of a large matrix, which may also be dense depending on the kernel. A global method, i.e. a method that requires all data points simultaneously, scales with the data dimension N and not with the intrinsic dimension d; the complexity for an exact dense eigendecomposition leads to $\mathcal{O}(N^{3})$. We have combined the two frameworks, $\mathsf{datafold}$ and $\mathsf{GOFMM}$. The first framework computes diffusion maps, where the computational bottleneck is the eigendecomposition while with the second framework we compute the eigendecomposition approximately within the iterative Lanczos method. A hierarchical approximation approach scales roughly with a runtime complexity of $\mathcal{O}(Nlog(N))$ vs. $\mathcal{O}(N^{3})$ for a classic approach. We evaluate the approach on two benchmark datasets -- scurve and MNIST -- with strong and weak scaling using OpenMP and MPI on dense matrices with maximum size of $100k\times100k$.

Quantifying the effect of uncertainties in systems where only point evaluations in the stochastic domain but no regularity conditions are available is limited to sampling-based techniques. This work presents an adaptive sequential stratification estimation method that uses Latin Hypercube Sampling within each stratum. The adaptation is achieved through a sequential hierarchical refinement of the stratification, guided by previous estimators using local (i.e., stratum-dependent) variability indicators based on generalized polynomial chaos expansions and Sobol decompositions. For a given total number of samples $N$, the corresponding hierarchically constructed sequence of Stratified Sampling estimators combined with Latin Hypercube sampling is adequately averaged to provide a final estimator with reduced variance. Numerical experiments illustrate the procedure's efficiency, indicating that it can offer a variance decay proportional to $N^{-2}$ in some cases.

This study demonstrates the effectiveness of XLNet, a transformer-based language model, for annotating argumentative elements in persuasive essays. XLNet's architecture incorporates a recurrent mechanism that allows it to model long-term dependencies in lengthy texts. Fine-tuned XLNet models were applied to three datasets annotated with different schemes - a proprietary dataset using the Annotations for Revisions and Reflections on Writing (ARROW) scheme, the PERSUADE corpus, and the Argument Annotated Essays (AAE) dataset. The XLNet models achieved strong performance across all datasets, even surpassing human agreement levels in some cases. This shows XLNet capably handles diverse annotation schemes and lengthy essays. Comparisons between the model outputs on different datasets also revealed insights into the relationships between the annotation tags. Overall, XLNet's strong performance on modeling argumentative structures across diverse datasets highlights its suitability for providing automated feedback on essay organization.

Detecting unusual patterns in graph data is a crucial task in data mining. However, existing methods often face challenges in consistently achieving satisfactory performance and lack interpretability, which hinders our understanding of anomaly detection decisions. In this paper, we propose a novel approach to graph anomaly detection that leverages the power of interpretability to enhance performance. Specifically, our method extracts an attention map derived from gradients of graph neural networks, which serves as a basis for scoring anomalies. In addition, we conduct theoretical analysis using synthetic data to validate our method and gain insights into its decision-making process. To demonstrate the effectiveness of our method, we extensively evaluate our approach against state-of-the-art graph anomaly detection techniques. The results consistently demonstrate the superior performance of our method compared to the baselines.

Partial differential equations (PDEs) are ubiquitous in the world around us, modelling phenomena from heat and sound to quantum systems. Recent advances in deep learning have resulted in the development of powerful neural solvers; however, while these methods have demonstrated state-of-the-art performance in both accuracy and computational efficiency, a significant challenge remains in their interpretability. Most existing methodologies prioritize predictive accuracy over clarity in the underlying mechanisms driving the model's decisions. Interpretability is crucial for trustworthiness and broader applicability, especially in scientific and engineering domains where neural PDE solvers might see the most impact. In this context, a notable gap in current research is the integration of symbolic frameworks (such as symbolic regression) into these solvers. Symbolic frameworks have the potential to distill complex neural operations into human-readable mathematical expressions, bridging the divide between black-box predictions and solutions.

Predicting plasma evolution within a Tokamak reactor is crucial to realizing the goal of sustainable fusion. Capabilities in forecasting the spatio-temporal evolution of plasma rapidly and accurately allow us to quickly iterate over design and control strategies on current Tokamak devices and future reactors. Modelling plasma evolution using numerical solvers is often expensive, consuming many hours on supercomputers, and hence, we need alternative inexpensive surrogate models. We demonstrate accurate predictions of plasma evolution both in simulation and experimental domains using deep learning-based surrogate modelling tools, viz., Fourier Neural Operators (FNO). We show that FNO has a speedup of six orders of magnitude over traditional solvers in predicting the plasma dynamics simulated from magnetohydrodynamic models, while maintaining a high accuracy (MSE $\approx$ $10^{-5}$). Our modified version of the FNO is capable of solving multi-variable Partial Differential Equations (PDE), and can capture the dependence among the different variables in a single model. FNOs can also predict plasma evolution on real-world experimental data observed by the cameras positioned within the MAST Tokamak, i.e., cameras looking across the central solenoid and the divertor in the Tokamak. We show that FNOs are able to accurately forecast the evolution of plasma and have the potential to be deployed for real-time monitoring. We also illustrate their capability in forecasting the plasma shape, the locations of interactions of the plasma with the central solenoid and the divertor for the full duration of the plasma shot within MAST. The FNO offers a viable alternative for surrogate modelling as it is quick to train and infer, and requires fewer data points, while being able to do zero-shot super-resolution and getting high-fidelity solutions.

We propose a new dataset distillation algorithm using reparameterization and convexification of implicit gradients (RCIG), that substantially improves the state-of-the-art. To this end, we first formulate dataset distillation as a bi-level optimization problem. Then, we show how implicit gradients can be effectively used to compute meta-gradient updates. We further equip the algorithm with a convexified approximation that corresponds to learning on top of a frozen finite-width neural tangent kernel. Finally, we improve bias in implicit gradients by parameterizing the neural network to enable analytical computation of final-layer parameters given the body parameters. RCIG establishes the new state-of-the-art on a diverse series of dataset distillation tasks. Notably, with one image per class, on resized ImageNet, RCIG sees on average a 108\% improvement over the previous state-of-the-art distillation algorithm. Similarly, we observed a 66\% gain over SOTA on Tiny-ImageNet and 37\% on CIFAR-100.

One of the goals of causal inference is to generalize from past experiments and observational data to novel conditions. While it is in principle possible to eventually learn a mapping from a novel experimental condition to an outcome of interest, provided a sufficient variety of experiments is available in the training data, coping with a large combinatorial space of possible interventions is hard. Under a typical sparse experimental design, this mapping is ill-posed without relying on heavy regularization or prior distributions. Such assumptions may or may not be reliable, and can be hard to defend or test. In this paper, we take a close look at how to warrant a leap from past experiments to novel conditions based on minimal assumptions about the factorization of the distribution of the manipulated system, communicated in the well-understood language of factor graph models. A postulated $\textit{interventional factor model}$ (IFM) may not always be informative, but it conveniently abstracts away a need for explicitly modeling unmeasured confounding and feedback mechanisms, leading to directly testable claims. Given an IFM and datasets from a collection of experimental regimes, we derive conditions for identifiability of the expected outcomes of new regimes never observed in these training data. We implement our framework using several efficient algorithms, and apply them on a range of semi-synthetic experiments.

北京阿比特科技有限公司