This work studies the multi-task functional linear regression models where both the covariates and the unknown regression coefficients (called slope functions) are curves. For slope function estimation, we employ penalized splines to balance bias, variance, and computational complexity. The power of multi-task learning is brought in by imposing additional structures over the slope functions. We propose a general model with double regularization over the spline coefficient matrix: i) a matrix manifold constraint, and ii) a composite penalty as a summation of quadratic terms. Many multi-task learning approaches can be treated as special cases of this proposed model, such as a reduced-rank model and a graph Laplacian regularized model. We show the composite penalty induces a specific norm, which helps to quantify the manifold curvature and determine the corresponding proper subset in the manifold tangent space. The complexity of tangent space subset is then bridged to the complexity of geodesic neighbor via generic chaining. A unified convergence upper bound is obtained and specifically applied to the reduced-rank model and the graph Laplacian regularized model. The phase transition behaviors for the estimators are examined as we vary the configurations of model parameters.
Memory interference may heavily inflate task execution times in Heterogeneous Systems-on-Chips (HeSoCs). Knowing worst-case interference is consequently fundamental for supporting the correct execution of time-sensitive applications. In most of the literature, worst-case interference is assumed to be generated by, and therefore is estimated through read-intensive synthetic workloads with no caching. Yet these workloads do not always generate worst-case interference. This is the consequence of the general results reported in this work. By testing on multiple architectures, we determined that the highest interference generation traffic pattern is actually hardware dependant, and that making assumptions could lead to a severe underestimation of the worst-case (in our case, of more than 9x).
A novel information-theoretic approach is proposed to assess the global practical identifiability of Bayesian statistical models. Based on the concept of conditional mutual information, an estimate of information gained for each model parameter is used to quantify the identifiability with practical considerations. No assumptions are made about the structure of the statistical model or the prior distribution while constructing the estimator. The estimator has the following notable advantages: first, no controlled experiment or data is required to conduct the practical identifiability analysis; second, unlike popular variance-based global sensitivity analysis methods, different forms of uncertainties, such as model-form, parameter, or measurement can be taken into account; third, the identifiability analysis is global, and therefore independent of a realization of the parameters. If an individual parameter has low identifiability, it can belong to an identifiable subset such that parameters within the subset have a functional relationship and thus have a combined effect on the statistical model. The practical identifiability framework is extended to highlight the dependencies between parameter pairs that emerge a posteriori to find identifiable parameter subsets. The applicability of the proposed approach is demonstrated using a linear Gaussian model and a non-linear methane-air reduced kinetics model. It is shown that by examining the information gained for each model parameter along with its dependencies with other parameters, a subset of parameters that can be estimated with high posterior certainty can be found.
This work visits the topic of jointly parsing constituency and dependency trees, i.e., to produce compatible constituency and dependency trees simultaneously for input sentences, which is attractive considering that the two types of trees are complementary in representing syntax. Compared with previous works, we make progress in four aspects: (1) adopting a much more efficient decoding algorithm, (2) exploring joint modeling at the training phase, instead of only at the inference phase, (3) proposing high-order scoring components for constituent-dependency interaction, (4) gaining more insights via in-depth experiments and analysis.
Efficient training of large-scale graph neural networks (GNNs) has been studied with a specific focus on reducing their memory consumption. Work by Liu et al. (2022) proposed extreme activation compression (EXACT) which demonstrated drastic reduction in memory consumption by performing quantization of the intermediate activation maps down to using INT2 precision. They showed little to no reduction in performance while achieving large reductions in GPU memory consumption. In this work, we present an improvement to the EXACT strategy by using block-wise quantization of the intermediate activation maps. We experimentally analyze different block sizes and show further reduction in memory consumption (>15%), and runtime speedup per epoch (about 5%) even when performing extreme extents of quantization with similar performance trade-offs as with the original EXACT. Further, we present a correction to the assumptions on the distribution of intermediate activation maps in EXACT (assumed to be uniform) and show improved variance estimations of the quantization and dequantization steps.
Previous attempts to incorporate a mention detection step into end-to-end neural coreference resolution for English have been hampered by the lack of singleton mention span data as well as other entity information. This paper presents a coreference model that learns singletons as well as features such as entity type and information status via a multi-task learning-based approach. This approach achieves new state-of-the-art scores on the OntoGUM benchmark (+2.7 points) and increases robustness on multiple out-of-domain datasets (+2.3 points on average), likely due to greater generalizability for mention detection and utilization of more data from singletons when compared to only coreferent mention pair matching.
Explainable recommender systems (RS) have traditionally followed a one-size-fits-all approach, delivering the same explanation level of detail to each user, without considering their individual needs and goals. Further, explanations in RS have so far been presented mostly in a static and non-interactive manner. To fill these research gaps, we aim in this paper to adopt a user-centered, interactive explanation model that provides explanations with different levels of detail and empowers users to interact with, control, and personalize the explanations based on their needs and preferences. We followed a user-centered approach to design interactive explanations with three levels of detail (basic, intermediate, and advanced) and implemented them in the transparent Recommendation and Interest Modeling Application (RIMA). We conducted a qualitative user study (N=14) to investigate the impact of providing interactive explanations with varying level of details on the users' perception of the explainable RS. Our study showed qualitative evidence that fostering interaction and giving users control in deciding which explanation they would like to see can meet the demands of users with different needs, preferences, and goals, and consequently can have positive effects on different crucial aspects in explainable recommendation, including transparency, trust, satisfaction, and user experience.
The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.