Formulating real-world optimization problems often begins with making predictions from historical data (e.g., an optimizer that aims to recommend fast routes relies upon travel-time predictions). Typically, learning the prediction model used to generate the optimization problem and solving that problem are performed in two separate stages. Recent work has showed how such prediction models can be learned end-to-end by differentiating through the optimization task. Such methods often yield empirical improvements, which are typically attributed to end-to-end making better error tradeoffs than the standard loss function used in a two-stage solution. We refine this explanation and more precisely characterize when end-to-end can improve performance. When prediction targets are stochastic, a two-stage solution must make an a priori choice about which statistics of the target distribution to model-we consider expectations over prediction targets-while an end-to-end solution can make this choice adaptively. We show that the performance gap between a two-stage and end-to-end approach is closely related to the price of correlation concept in stochastic optimization and show the implications of some existing POC results for the predict-then-optimize problem. We then consider a novel and particularly practical setting, where multiple prediction targets are combined to obtain each of the objective function's coefficients. We give explicit constructions where (1) two-stage performs unboundedly worse than end-to-end; and (2) two-stage is optimal. We use simulations to experimentally quantify performance gaps and identify a wide range of real-world applications from the literature whose objective functions rely on multiple prediction targets, suggesting that end-to-end learning could yield significant improvements.
Assortment optimization describes a retailer's general problem of deciding which variants in a product category to offer. In a typical formulation, there is a universe of substitute products whose prices have been pre-determined, and a model for how customers choose between these products. The goal is to find a subset to offer that maximizes aggregate revenue. In this paper we ask whether offering an assortment is actually optimal, given the recent emergence of more sophisticated selling practices, such as offering certain products only through lotteries. To formalize this question, we introduce a mechanism design problem where the items have fixed prices and the seller optimizes over (randomized) allocations. The seller has a Bayesian prior on the buyer's ranking of the items along with an outside option. Under our formulation, revenue maximization over deterministic mechanisms is equivalent to assortment optimization, while randomized mechanisms allow for lotteries that sell fixed-price items. We derive a sufficient condition, based purely on the buyer's ranking distribution, that guarantees assortments to be optimal within this larger class of randomized mechanisms. Our sufficient condition captures many preference distributions commonly studied in the assortment optimization literature -- Multi-Nomial Logit (MNL), Markov Chain, Tversky's Elimination by Aspects model, a mixture of MNL with an Independent Demand model, and simple cases of Nested Logit. When our condition does not hold, we also bound the suboptimality of assortments in comparison to lotteries. Finally, from these results emerge two findings of independent interest: an example showing that Nested Logit is not captured by Markov Chain choice models, and a tighter Linear Programming relaxation for assortment optimization.
Recently, improving the robustness of policies across different environments attracts increasing attention in the reinforcement learning (RL) community. Existing robust RL methods mostly aim to achieve the max-min robustness by optimizing the policy's performance in the worst-case environment. However, in practice, a user that uses an RL policy may have different preferences over its performance across environments. Clearly, the aforementioned max-min robustness is oftentimes too conservative to satisfy user preference. Therefore, in this paper, we integrate user preference into policy learning in robust RL, and propose a novel User-Oriented Robust RL (UOR-RL) framework. Specifically, we define a new User-Oriented Robustness (UOR) metric for RL, which allocates different weights to the environments according to user preference and generalizes the max-min robustness metric. To optimize the UOR metric, we develop two different UOR-RL training algorithms for the scenarios with or without a priori known environment distribution, respectively. Theoretically, we prove that our UOR-RL training algorithms converge to near-optimal policies even with inaccurate or completely no knowledge about the environment distribution. Furthermore, we carry out extensive experimental evaluations in 4 MuJoCo tasks. The experimental results demonstrate that UOR-RL is comparable to the state-of-the-art baselines under the average and worst-case performance metrics, and more importantly establishes new state-of-the-art performance under the UOR metric.
We introduce the $\texttt{$k$-experts}$ problem - a generalization of the classic Prediction with Expert's Advice framework. Unlike the classic version, where the learner selects exactly one expert from a pool of $N$ experts at each round, in this problem, the learner can select a subset of $k$ experts at each round $(1\leq k\leq N)$. The reward obtained by the learner at each round is assumed to be a function of the $k$ selected experts. The primary objective is to design an online learning policy with a small regret. In this pursuit, we propose $\texttt{SAGE}$ ($\textbf{Sa}$mpled Hed$\textbf{ge}$) - a framework for designing efficient online learning policies by leveraging statistical sampling techniques. For a wide class of reward functions, we show that $\texttt{SAGE}$ either achieves the first sublinear regret guarantee or improves upon the existing ones. Furthermore, going beyond the notion of regret, we fully characterize the mistake bounds achievable by online learning policies for stable loss functions. We conclude the paper by establishing a tight regret lower bound for a variant of the $\texttt{$k$-experts}$ problem and carrying out experiments with standard datasets.
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.
We address the issue of tuning hyperparameters (HPs) for imitation learning algorithms in the context of continuous-control, when the underlying reward function of the demonstrating expert cannot be observed at any time. The vast literature in imitation learning mostly considers this reward function to be available for HP selection, but this is not a realistic setting. Indeed, would this reward function be available, it could then directly be used for policy training and imitation would not be necessary. To tackle this mostly ignored problem, we propose a number of possible proxies to the external reward. We evaluate them in an extensive empirical study (more than 10'000 agents across 9 environments) and make practical recommendations for selecting HPs. Our results show that while imitation learning algorithms are sensitive to HP choices, it is often possible to select good enough HPs through a proxy to the reward function.
Ranking has always been one of the top concerns in information retrieval researches. For decades, the lexical matching signal has dominated the ad-hoc retrieval process, but solely using this signal in retrieval may cause the vocabulary mismatch problem. In recent years, with the development of representation learning techniques, many researchers turn to Dense Retrieval (DR) models for better ranking performance. Although several existing DR models have already obtained promising results, their performance improvement heavily relies on the sampling of training examples. Many effective sampling strategies are not efficient enough for practical usage, and for most of them, there still lacks theoretical analysis in how and why performance improvement happens. To shed light on these research questions, we theoretically investigate different training strategies for DR models and try to explain why hard negative sampling performs better than random sampling. Through the analysis, we also find that there are many potential risks in static hard negative sampling, which is employed by many existing training methods. Therefore, we propose two training strategies named a Stable Training Algorithm for dense Retrieval (STAR) and a query-side training Algorithm for Directly Optimizing Ranking pErformance (ADORE), respectively. STAR improves the stability of DR training process by introducing random negatives. ADORE replaces the widely-adopted static hard negative sampling method with a dynamic one to directly optimize the ranking performance. Experimental results on two publicly available retrieval benchmark datasets show that either strategy gains significant improvements over existing competitive baselines and a combination of them leads to the best performance.
Discovering causal structure among a set of variables is a fundamental problem in many empirical sciences. Traditional score-based casual discovery methods rely on various local heuristics to search for a Directed Acyclic Graph (DAG) according to a predefined score function. While these methods, e.g., greedy equivalence search, may have attractive results with infinite samples and certain model assumptions, they are usually less satisfactory in practice due to finite data and possible violation of assumptions. Motivated by recent advances in neural combinatorial optimization, we propose to use Reinforcement Learning (RL) to search for the DAG with the best scoring. Our encoder-decoder model takes observable data as input and generates graph adjacency matrices that are used to compute rewards. The reward incorporates both the predefined score function and two penalty terms for enforcing acyclicity. In contrast with typical RL applications where the goal is to learn a policy, we use RL as a search strategy and our final output would be the graph, among all graphs generated during training, that achieves the best reward. We conduct experiments on both synthetic and real datasets, and show that the proposed approach not only has an improved search ability but also allows a flexible score function under the acyclicity constraint.
The current strive towards end-to-end trainable computer vision systems imposes major challenges for the task of visual tracking. In contrast to most other vision problems, tracking requires the learning of a robust target-specific appearance model online, during the inference stage. To be end-to-end trainable, the online learning of the target model thus needs to be embedded in the tracking architecture itself. Due to these difficulties, the popular Siamese paradigm simply predicts a target feature template. However, such a model possesses limited discriminative power due to its inability of integrating background information. We develop an end-to-end tracking architecture, capable of fully exploiting both target and background appearance information for target model prediction. Our architecture is derived from a discriminative learning loss by designing a dedicated optimization process that is capable of predicting a powerful model in only a few iterations. Furthermore, our approach is able to learn key aspects of the discriminative loss itself. The proposed tracker sets a new state-of-the-art on 6 tracking benchmarks, achieving an EAO score of 0.440 on VOT2018, while running at over 40 FPS.
Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to real-world problems is their lack of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based reinforcement learning method which combines a learned, factorized transition model of the environment with rollout simulations to learn an effective policy from few examples. The learned transition model employs an abstract, discrete (bottleneck) state, which increases sample efficiency by reducing the number of model parameters and by exploiting structural properties of the environment. We provide a mathematical analysis of the Bottleneck Simulator in terms of fixed points of the learned policy, which reveals how performance is affected by four distinct sources of error: an error related to the abstract space structure, an error related to the transition model estimation variance, an error related to the transition model estimation bias, and an error related to the transition model class bias. Finally, we evaluate the Bottleneck Simulator on two natural language processing tasks: a text adventure game and a real-world, complex dialogue response selection task. On both tasks, the Bottleneck Simulator yields excellent performance beating competing approaches.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.