亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In order to advance academic research, it is important to assess and evaluate the academic influence of researchers and the findings they produce. Citation metrics are universally used methods to evaluate researchers. Amongst the several variations of citation metrics, the h-index proposed by Hirsch has become the leading measure. Recent work shows that h-index is not an effective measure to determine scientific impact - due to changing authorship patterns. This can be mitigated by using h-index of a paper to compute h- index of an author. We show that using fractional allocation of h-index gives better results. In this work, we reapply two indices based on the h-index of a single paper. The indices are referred to as: hp-index and hp-frac-index. We run large-scale experiments in three different fields with about a million publications and 3,000 authors. We also compare h-index of a paper with nine h-index like metrics. Our experiments show that hp-frac-index provides a unique ranking when compared to h-index. It also performs better than h-index in providing higher ranks to the awarded researcher.

相關內容

R is a language and environment for statistical computing and graphics, which provides a wide variety of statistical tools (modeling, statistical testing, time series analysis, classification problems, machine learning, ...), together with amazing graphical techniques and the great advantage that it is highly extensible. Nowadays, there is no doubt that it is the software par excellence in statistical courses for any level, for theoretical and applied subjects alike. Besides, it has become an almost essential tool for every research work that involves any kind of analysis or data visualization. Furthermore, it is one of the most employed programming languages for general purposes. The goal of this work is helping to share ideas and resources to improve teaching and/or research using the statistical software R. We will cover its benefits, show how to get started and where to locate specific resources, and will make interesting recommendations for using R, according to our experience. For the classroom we will develop a curricular and assessment infrastructure to support both dissemination and evaluation, while for research we will offer a broader approach to quantitative studies that provides an excellent support for work in science and technology.

Blockchain technology transformed the digital sphere by providing a transparent, secure, and decentralized platform for data security across a range of industries, including cryptocurrencies and supply chain management. Blockchain's integrity and dependability have been jeopardized by the rising number of security threats, which have attracted cybercriminals as a target. By summarizing suggested fixes, this research aims to offer a thorough analysis of mitigating blockchain attacks. The objectives of the paper include identifying weak blockchain attacks, evaluating various solutions, and determining how effective and effective they are at preventing these attacks. The study also highlights how crucial it is to take into account the particular needs of every blockchain application. This study provides beneficial perspectives and insights for blockchain researchers and practitioners, making it essential reading for those interested in current and future trends in blockchain security research.

The Plackett--Luce model is a popular approach for ranking data analysis, where a utility vector is employed to determine the probability of each outcome based on Luce's choice axiom. In this paper, we investigate the asymptotic theory of utility vector estimation by maximizing different types of likelihood, such as the full-, marginal-, and quasi-likelihood. We provide a rank-matching interpretation for the estimating equations of these estimators and analyze their asymptotic behavior as the number of items being compared tends to infinity. In particular, we establish the uniform consistency of these estimators under conditions characterized by the topology of the underlying comparison graph sequence and demonstrate that the proposed conditions are sharp for common sampling scenarios such as the nonuniform random hypergraph model and the hypergraph stochastic block model; we also obtain the asymptotic normality of these estimators and discuss the trade-off between statistical efficiency and computational complexity for practical uncertainty quantification. Both results allow for nonuniform and inhomogeneous comparison graphs with varying edge sizes and different asymptotic orders of edge probabilities. We verify our theoretical findings by conducting detailed numerical experiments.

Detecting and extracting textual information from natural scene images needs Scene Text Detection (STD) algorithms. Fully Convolutional Neural Networks (FCNs) are usually utilized as the backbone model to extract features in these instance segmentation based STD algorithms. FCNs naturally come with high computational complexity. Furthermore, to keep up with the growing variety of models, flexible architectures are needed. In order to accelerate various STD algorithms efficiently, a versatility-performance balanced hardware architecture is proposed, together with a simple but efficient way of configuration. This architecture is able to compute different FCN models without hardware redesign. The optimization is focused on hardware with finely designed computing modules, while the versatility of different network reconfigurations is achieved by microcodes instead of a strenuously designed compiler. Multiple parallel techniques at different levels and several complexity-reduction methods are explored to speed up the FCN computation. Results from implementation show that, given the same tasks, the proposed system achieves a better throughput compared with the studied GPU. Particularly, our system reduces the comprehensive Operation Expense (OpEx) at GPU by 46\%, while the power efficiency is enhanced by 32\%. This work has been deployed in commercial applications and provided stable consumer text detection services.

This paper presents a novel design for a Variable Stiffness 3 DoF actuated wrist to improve task adaptability and safety during interactions with people and objects. The proposed design employs a hybrid serial-parallel configuration to achieve a 3 DoF wrist joint which can actively and continuously vary its overall stiffness thanks to the redundant elastic actuation system, using only four motors. Its stiffness control principle is similar to human muscular impedance regulation, with the shape of the stiffness ellipsoid mostly depending on posture, while the elastic cocontraction modulates its overall size. The employed mechanical configuration achieves a compact and lightweight device that, thanks to its anthropomorphous characteristics, could be suitable for prostheses and humanoid robots. After introducing the design concept of the device, this work provides methods to estimate the posture of the wrist by using joint angle measurements and to modulate its stiffness. Thereafter, this paper describes the first physical implementation of the presented design, detailing the mechanical prototype and electronic hardware, the control architecture, and the associated firmware. The reported experimental results show the potential of the proposed device while highlighting some limitations. To conclude, we show the motion and stiffness behavior of the device with some qualitative experiments.

We present new results on average causal effects in settings with unmeasured exposure-outcome confounding. Our results are motivated by a class of estimands, e.g., frequently of interest in medicine and public health, that are currently not targeted by standard approaches for average causal effects. We recognize these estimands as queries about the average causal effect of an intervening variable. We anchor our introduction of these estimands in an investigation of the role of chronic pain and opioid prescription patterns in the opioid epidemic, and illustrate how conventional approaches will lead unreplicable estimates with ambiguous policy implications. We argue that our altenative effects are replicable and have clear policy implications, and furthermore are non-parametrically identified by the classical frontdoor formula. As an independent contribution, we derive a new semiparametric efficient estimator of the frontdoor formula with a uniform sample boundedness guarantee. This property is unique among previously-described estimators in its class, and we demonstrate superior performance in finite-sample settings. Theoretical results are applied with data from the National Health and Nutrition Examination Survey.

Machine learning methods are commonly evaluated and compared by their performance on data sets from public repositories. This allows for multiple methods, oftentimes several thousands, to be evaluated under identical conditions and across time. The highest ranked performance on a problem is referred to as state-of-the-art (SOTA) performance, and is used, among other things, as a reference point for publication of new methods. Using the highest-ranked performance as an estimate for SOTA is a biased estimator, giving overly optimistic results. The mechanisms at play are those of multiplicity, a topic that is well-studied in the context of multiple comparisons and multiple testing, but has, as far as the authors are aware of, been nearly absent from the discussion regarding SOTA estimates. The optimistic state-of-the-art estimate is used as a standard for evaluating new methods, and methods with substantial inferior results are easily overlooked. In this article, we provide a probability distribution for the case of multiple classifiers so that known analyses methods can be engaged and a better SOTA estimate can be provided. We demonstrate the impact of multiplicity through a simulated example with independent classifiers. We show how classifier dependency impacts the variance, but also that the impact is limited when the accuracy is high. Finally, we discuss a real-world example; a Kaggle competition from 2020.

To mitigate the growing carbon footprint of computing systems, there has been an increasing focus on carbon-aware approaches that seek to align the power usage of IT infrastructure with the availability of clean energy. Unfortunately, research on carbon-aware applications and the required interfaces between computing and energy systems remain complex, due to the scarcity of available testing environments. To this day, almost all new approaches are evaluated on self-implemented simulation testbeds, which leads to repeated development efforts by researchers and low comparability of approaches. In this paper, we present our vision of a co-simulation testbed for carbon-aware applications and systems. We envision a versatile testbed which lets users connect domain-specific simulators for components like renewable power generation, energy storage, and power flow analysis with real software and hardware. By providing extensibility on the one hand and access to state-of-the-art implementations, datasets, and best practices on the other, we hope to accelerate research in carbon-aware computing. In addition, a co-simulation testbed can be useful for development and operations, like in continuous testing. We implemented a first prototype of our idea and welcome the community to contribute to this vision.

The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.

Multimodal sentiment analysis is a very actively growing field of research. A promising area of opportunity in this field is to improve the multimodal fusion mechanism. We present a novel feature fusion strategy that proceeds in a hierarchical fashion, first fusing the modalities two in two and only then fusing all three modalities. On multimodal sentiment analysis of individual utterances, our strategy outperforms conventional concatenation of features by 1%, which amounts to 5% reduction in error rate. On utterance-level multimodal sentiment analysis of multi-utterance video clips, for which current state-of-the-art techniques incorporate contextual information from other utterances of the same clip, our hierarchical fusion gives up to 2.4% (almost 10% error rate reduction) over currently used concatenation. The implementation of our method is publicly available in the form of open-source code.

北京阿比特科技有限公司