亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a novel design for a Variable Stiffness 3 DoF actuated wrist to improve task adaptability and safety during interactions with people and objects. The proposed design employs a hybrid serial-parallel configuration to achieve a 3 DoF wrist joint which can actively and continuously vary its overall stiffness thanks to the redundant elastic actuation system, using only four motors. Its stiffness control principle is similar to human muscular impedance regulation, with the shape of the stiffness ellipsoid mostly depending on posture, while the elastic cocontraction modulates its overall size. The employed mechanical configuration achieves a compact and lightweight device that, thanks to its anthropomorphous characteristics, could be suitable for prostheses and humanoid robots. After introducing the design concept of the device, this work provides methods to estimate the posture of the wrist by using joint angle measurements and to modulate its stiffness. Thereafter, this paper describes the first physical implementation of the presented design, detailing the mechanical prototype and electronic hardware, the control architecture, and the associated firmware. The reported experimental results show the potential of the proposed device while highlighting some limitations. To conclude, we show the motion and stiffness behavior of the device with some qualitative experiments.

相關內容

The recent development of integrated sensing and communications (ISAC) technology offers new opportunities to meet high-throughput and low-latency communication as well as high-resolution localization requirements in vehicular networks. However, considering the limited transmit power of the road site units (RSUs) and the relatively small radar cross section (RCS) of vehicles with random reflection coefficients, the power of echo signals may be too weak to be utilized for effective target detection and tracking. Moreover, high-frequency signals usually suffer from large fading loss when penetrating vehicles, which seriously degrades the quality of communication services inside the vehicles. To handle this issue, we propose a novel sensing-assisted communication mechanism by employing an intelligent omni-surface (IOS) on the surface of vehicles to enhance both sensing and communication (S&C) performance. To this end, we first propose a two-stage ISAC protocol, including the joint S&C stage and the communication-only stage, to fulfill more efficient communication performance improvements benefited from sensing. The achievable communication rate maximization problem is formulated by jointly optimizing the transmit beamforming, the IOS phase shifts, and the duration of the joint S&C stage. However, solving this ISAC optimization problem is highly non-trivial since inaccurate estimation and measurement information renders the achievable rate lack of closed-form expression. To handle this issue, we first derive a closed-form expression of the achievable rate under uncertain location information, and then unveil a sufficient and necessary condition for the existence of the joint S&C stage to offer useful insights for practical system design. Moreover, two typical scenarios including interference-limited and noise-limited cases are analyzed.

Automaton-based representations of task knowledge play an important role in control and planning for sequential decision-making problems. However, obtaining the high-level task knowledge required to build such automata is often difficult. Meanwhile, large-scale generative language models (GLMs) can automatically generate relevant task knowledge. However, the textual outputs from GLMs cannot be formally verified or used for sequential decision-making. We propose a novel algorithm named GLM2FSA, which constructs a finite state automaton (FSA) encoding high-level task knowledge from a brief natural-language description of the task goal. GLM2FSA first sends queries to a GLM to extract task knowledge in textual form, and then it builds an FSA to represent this text-based knowledge. The proposed algorithm thus fills the gap between natural-language task descriptions and automaton-based representations, and the constructed FSA can be formally verified against user-defined specifications. We accordingly propose a method to iteratively refine the queries to the GLM based on the outcomes, e.g., counter-examples, from verification. We demonstrate GLM2FSA's ability to build and refine automaton-based representations of everyday tasks (e.g., crossing a road), and also of tasks that require highly-specialized knowledge (e.g., executing secure multi-party computation).

This paper presents a novel Learning from Demonstration (LfD) method that uses neural fields to learn new skills efficiently and accurately. It achieves this by utilizing a shared embedding to learn both scene and motion representations in a generative way. Our method smoothly maps each expert demonstration to a scene-motion embedding and learns to model them without requiring hand-crafted task parameters or large datasets. It achieves data efficiency by enforcing scene and motion generation to be smooth with respect to changes in the embedding space. At inference time, our method can retrieve scene-motion embeddings using test time optimization, and generate precise motion trajectories for novel scenes. The proposed method is versatile and can employ images, 3D shapes, and any other scene representations that can be modeled using neural fields. Additionally, it can generate both end-effector positions and joint angle-based trajectories. Our method is evaluated on tasks that require accurate motion trajectory generation, where the underlying task parametrization is based on object positions and geometric scene changes. Experimental results demonstrate that the proposed method outperforms the baseline approaches and generalizes to novel scenes. Furthermore, in real-world experiments, we show that our method can successfully model multi-valued trajectories, it is robust to the distractor objects introduced at inference time, and it can generate 6D motions.

The design of personalized cranial implants is a challenging and tremendous task that has become a hot topic in terms of process automation with the use of deep learning techniques. The main challenge is associated with the high diversity of possible cranial defects. The lack of appropriate data sources negatively influences the data-driven nature of deep learning algorithms. Hence, one of the possible solutions to overcome this problem is to rely on synthetic data. In this work, we propose three volumetric variations of deep generative models to augment the dataset by generating synthetic skulls, i.e. Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP), WGAN-GP hybrid with Variational Autoencoder pretraining (VAE/WGAN-GP) and Introspective Variational Autoencoder (IntroVAE). We show that it is possible to generate dozens of thousands of defective skulls with compatible defects that achieve a trade-off between defect heterogeneity and the realistic shape of the skull. We evaluate obtained synthetic data quantitatively by defect segmentation with the use of V-Net and qualitatively by their latent space exploration. We show that the synthetically generated skulls highly improve the segmentation process compared to using only the original unaugmented data. The generated skulls may improve the automatic design of personalized cranial implants for real medical cases.

Rust is an emerging, strongly-typed programming language focusing on efficiency and memory safety. With increasing projects adopting Rust, knowing how to use Unsafe Rust is crucial for Rust security. We observed that the description of safety requirements needs to be unified in Unsafe Rust programming. Current unsafe API documents in the standard library exhibited variations, including inconsistency and insufficiency. To enhance Rust security, we suggest unsafe API documents to list systematic descriptions of safety requirements for users to follow. In this paper, we conducted the first comprehensive empirical study on safety requirements across unsafe boundaries. We studied unsafe API documents in the standard library and defined 19 safety properties (SP). We then completed the data labeling on 416 unsafe APIs while analyzing their correlation to find interpretable results. To validate the practical usability and SP coverage, we categorized existing Rust CVEs until 2023-07-08 and performed a statistical analysis of std unsafe API usage toward the crates.io ecosystem. In addition, we conducted a user survey to gain insights into four aspects from experienced Rust programmers. We finally received 50 valid responses and confirmed our classification with statistical significance.

Machine learning (ML) components are increasingly incorporated into software products, yet developers face challenges in transitioning from ML prototypes to products. Academic researchers struggle to propose solutions to these challenges and evaluate interventions because they often do not have access to close-sourced ML products from industry. In this study, we define and identify open-source ML products, curating a dataset of 262 repositories from GitHub, to facilitate further research and education. As a start, we explore six broad research questions related to different development activities and report 21 findings from a sample of 30 ML products from the dataset. Our findings reveal a variety of development practices and architectural decisions surrounding different types and uses of ML models that offer ample opportunities for future research innovations. We also find very little evidence of industry best practices such as model testing and pipeline automation within the open-source ML products, which leaves room for further investigation to understand its potential impact on the development and eventual end-user experience for the products.

In this paper, we address the problem of system identification and control of a front-steered vehicle which abides by the Ackermann geometry constraints. This problem arises naturally for on-road and off-road vehicles that require reliable system identification and basic feedback controllers for various applications such as lane keeping and way-point navigation. Traditional system identification requires expensive equipment and is time consuming. In this work we explore the use of differentiable physics for system identification and controller design and make the following contributions: i)We develop a differentiable physics simulator (DPS) to provide a method for the system identification of front-steered class of vehicles whose system parameters are learned using a gradient-based method; ii) We provide results for our gradient-based method that exhibit better sample efficiency in comparison to other gradient-free methods; iii) We validate the learned system parameters by implementing a feedback controller to demonstrate stable lane keeping performance on a real front-steered vehicle, the F1TENTH; iv) Further, we provide results exhibiting comparable lane keeping behavior for system parameters learned using our gradient-based method with lane keeping behavior of the actual system parameters of the F1TENTH.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

北京阿比特科技有限公司