亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Rust is an emerging, strongly-typed programming language focusing on efficiency and memory safety. With increasing projects adopting Rust, knowing how to use Unsafe Rust is crucial for Rust security. We observed that the description of safety requirements needs to be unified in Unsafe Rust programming. Current unsafe API documents in the standard library exhibited variations, including inconsistency and insufficiency. To enhance Rust security, we suggest unsafe API documents to list systematic descriptions of safety requirements for users to follow. In this paper, we conducted the first comprehensive empirical study on safety requirements across unsafe boundaries. We studied unsafe API documents in the standard library and defined 19 safety properties (SP). We then completed the data labeling on 416 unsafe APIs while analyzing their correlation to find interpretable results. To validate the practical usability and SP coverage, we categorized existing Rust CVEs until 2023-07-08 and performed a statistical analysis of std unsafe API usage toward the crates.io ecosystem. In addition, we conducted a user survey to gain insights into four aspects from experienced Rust programmers. We finally received 50 valid responses and confirmed our classification with statistical significance.

相關內容

Rust 是一種注重高效、安全、并行的系統程序語言。

Searching in a denied environment is challenging for swarm robots as no assistance from GNSS, mapping, data sharing, and central processing is allowed. However, using olfactory and auditory signals to cooperate like animals could be an important way to improve the collaboration of swarm robots. In this paper, an Olfactory-Auditory augmented Bug algorithm (OA-Bug) is proposed for a swarm of autonomous robots to explore a denied environment. A simulation environment is built to measure the performance of OA-Bug. The coverage of the search task can reach 96.93% using OA-Bug, which is significantly improved compared with a similar algorithm, SGBA. Furthermore, experiments are conducted on real swarm robots to prove the validity of OA-Bug. Results show that OA-Bug can improve the performance of swarm robots in a denied environment.

This paper explores the integration of two AI subdisciplines employed in the development of artificial agents that exhibit intelligent behavior: Large Language Models (LLMs) and Cognitive Architectures (CAs). We present three integration approaches, each grounded in theoretical models and supported by preliminary empirical evidence. The modular approach, which introduces four models with varying degrees of integration, makes use of chain-of-thought prompting, and draws inspiration from augmented LLMs, the Common Model of Cognition, and the simulation theory of cognition. The agency approach, motivated by the Society of Mind theory and the LIDA cognitive architecture, proposes the formation of agent collections that interact at micro and macro cognitive levels, driven by either LLMs or symbolic components. The neuro-symbolic approach, which takes inspiration from the CLARION cognitive architecture, proposes a model where bottom-up learning extracts symbolic representations from an LLM layer and top-down guidance utilizes symbolic representations to direct prompt engineering in the LLM layer. These approaches aim to harness the strengths of both LLMs and CAs, while mitigating their weaknesses, thereby advancing the development of more robust AI systems. We discuss the tradeoffs and challenges associated with each approach.

The advancement of manufacturing technologies has enabled the integration of more intellectual property (IP) cores on the same system-on-chip (SoC). Scalable and high throughput on-chip communication architecture has become a vital component in today's SoCs. Diverse technologies such as electrical, wireless, optical, and hybrid are available for on-chip communication with different architectures supporting them. Security of the on-chip communication is crucial because exploiting any vulnerability would be a goldmine for an attacker. In this survey, we provide a comprehensive review of threat models, attacks, and countermeasures over diverse on-chip communication technologies as well as sophisticated architectures.

Cloud computing platforms are progressively adopting Field Programmable Gate Arrays to deploy specialized hardware accelerators for specific computational tasks. However, the security of FPGA-based bitstream for Intellectual Property, IP cores from unauthorized interception in cloud environments remains a prominent concern. Existing methodologies for protection of such bitstreams possess several limitations, such as requiring a large number of keys, tying bitstreams to specific FPGAs, and relying on trusted third parties. This paper proposes Aggregate Encryption and Individual Decryption, a cryptosystem based on key aggregation to enhance the security of FPGA-based bitstream for IP cores and to address the pitfalls of previous related works. In our proposed scheme, IP providers can encrypt their bitstreams with a single key for a set S of FPGA boards, with which the bitstreams can directly be decrypted on any of the FPGA boards in S. Aggregate encryption of the key is performed in a way which ensures that the key can solely be obtained onboard through individual decryption employing the board's private key, thus facilitating secure key provisioning. The proposed cryptosystem is evaluated mainly on Zynq FPGAs. The outcomes demonstrate that our cryptosystem not only outperforms existing techniques with respect to resource, time and energy significantly but also upholds robust security assurances.

Wrapyfi is a Python framework that provides an interface for selecting and utilizing various supported middleware, including YARP, ROS, ROS 2, and ZeroMQ, for distributed systems and robotics applications. It supports common communication patterns like publish-subscribe and request-reply. The framework enables encoding and decoding of data types from widely used deep learning frameworks such as TensorFlow, JAX, MXNet, PyTorch, and PaddlePaddle. Wrapyfi also facilitates the serialization of device-specific tensors. It is particularly useful in scenarios requiring reliable data transfer and interoperability between different components in distributed environments. Comprehensive documentation and examples are available to assist users in implementing Wrapyfi for developing scalable and modular systems.

Variance in predictions across different trained models is a significant, under-explored source of error in fair classification. In practice, the variance on some data examples is so large that decisions can be effectively arbitrary. To investigate this problem, we take an experimental approach and make four overarching contributions: We 1) Define a metric called self-consistency, derived from variance, which we use as a proxy for measuring and reducing arbitrariness; 2) Develop an ensembling algorithm that abstains from classification when a prediction would be arbitrary; 3) Conduct the largest to-date empirical study of the role of variance (vis-a-vis self-consistency and arbitrariness) in fair classification; and, 4) Release a toolkit that makes the US Home Mortgage Disclosure Act (HMDA) datasets easily usable for future research. Altogether, our experiments reveal shocking insights about the reliability of conclusions on benchmark datasets. Most fairness classification benchmarks are close-to-fair when taking into account the amount of arbitrariness present in predictions -- before we even try to apply common fairness interventions. This finding calls into question the practical utility of common algorithmic fairness methods, and in turn suggests that we should fundamentally reconsider how we choose to measure fairness in machine learning.

Data storytelling is powerful for communicating data insights, but it requires diverse skills and considerable effort from human creators. Recent research has widely explored the potential for artificial intelligence (AI) to support and augment humans in data storytelling. However, there lacks a systematic review to understand data storytelling tools from the perspective of human-AI collaboration, which hinders researchers from reflecting on the existing collaborative tool designs that promote humans' and AI's advantages and mitigate their shortcomings. This paper investigated existing tools with a framework from two perspectives: the stages in the storytelling workflow where a tool serves, including analysis, planning, implementation, and communication, and the roles of humans and AI in each stage, such as creators, assistants, optimizers, and reviewers. Through our analysis, we recognize the common collaboration patterns in existing tools, summarize lessons learned from these patterns, and further illustrate research opportunities for human-AI collaboration in data storytelling.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

北京阿比特科技有限公司