亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automaton-based representations of task knowledge play an important role in control and planning for sequential decision-making problems. However, obtaining the high-level task knowledge required to build such automata is often difficult. Meanwhile, large-scale generative language models (GLMs) can automatically generate relevant task knowledge. However, the textual outputs from GLMs cannot be formally verified or used for sequential decision-making. We propose a novel algorithm named GLM2FSA, which constructs a finite state automaton (FSA) encoding high-level task knowledge from a brief natural-language description of the task goal. GLM2FSA first sends queries to a GLM to extract task knowledge in textual form, and then it builds an FSA to represent this text-based knowledge. The proposed algorithm thus fills the gap between natural-language task descriptions and automaton-based representations, and the constructed FSA can be formally verified against user-defined specifications. We accordingly propose a method to iteratively refine the queries to the GLM based on the outcomes, e.g., counter-examples, from verification. We demonstrate GLM2FSA's ability to build and refine automaton-based representations of everyday tasks (e.g., crossing a road), and also of tasks that require highly-specialized knowledge (e.g., executing secure multi-party computation).

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

The deployment of agile autonomous systems in challenging, unstructured environments requires adaptation capabilities and robustness to uncertainties. Existing robust and adaptive controllers, such as those based on model predictive control (MPC), can achieve impressive performance at the cost of heavy online onboard computations. Strategies that efficiently learn robust and onboard-deployable policies from MPC have emerged, but they still lack fundamental adaptation capabilities. In this work, we extend an existing efficient Imitation Learning (IL) algorithm for robust policy learning from MPC with the ability to learn policies that adapt to challenging model/environment uncertainties. The key idea of our approach consists in modifying the IL procedure by conditioning the policy on a learned lower-dimensional model/environment representation that can be efficiently estimated online. We tailor our approach to the task of learning an adaptive position and attitude control policy to track trajectories under challenging disturbances on a multirotor. Evaluations in simulation show that a high-quality adaptive policy can be obtained in about $1.3$ hours. We additionally empirically demonstrate rapid adaptation to in- and out-of-training-distribution uncertainties, achieving a $6.1$ cm average position error under wind disturbances that correspond to about $50\%$ of the weight of the robot, and that are $36\%$ larger than the maximum wind seen during training.

Several task and motion planning algorithms have been proposed recently to design paths for mobile robot teams with collaborative high-level missions specified using formal languages, such as Linear Temporal Logic (LTL). However, the designed paths often lack reactivity to failures of robot capabilities (e.g., sensing, mobility, or manipulation) that can occur due to unanticipated events (e.g., human intervention or system malfunctioning) which in turn may compromise mission performance. To address this novel challenge, in this paper, we propose a new resilient mission planning algorithm for teams of heterogeneous robots with collaborative LTL missions. The robots are heterogeneous with respect to their capabilities while the mission requires applications of these skills at certain areas in the environment in a temporal/logical order. The proposed method designs paths that can adapt to unexpected failures of robot capabilities. This is accomplished by re-allocating sub-tasks to the robots based on their currently functioning skills while minimally disrupting the existing team motion plans. We provide experiments and theoretical guarantees demonstrating the efficiency and resiliency of the proposed algorithm.

Causal modelling offers great potential to provide autonomous agents the ability to understand the data-generation process that governs their interactions with the world. Such models capture formal knowledge as well as probabilistic representations of noise and uncertainty typically encountered by autonomous robots in real-world environments. Thus, causality can aid autonomous agents in making decisions and explaining outcomes, but deploying causality in such a manner introduces new challenges. Here we identify challenges relating to causality in the context of a drone system operating in a salt mine. Such environments are challenging for autonomous agents because of the presence of confounders, non-stationarity, and a difficulty in building complete causal models ahead of time. To address these issues, we propose a probabilistic causal framework consisting of: causally-informed POMDP planning, online SCM adaptation, and post-hoc counterfactual explanations. Further, we outline planned experimentation to evaluate the framework integrated with a drone system in simulated mine environments and on a real-world mine dataset.

Face recognition models embed a face image into a low-dimensional identity vector containing abstract encodings of identity-specific facial features that allow individuals to be distinguished from one another. We tackle the challenging task of inverting the latent space of pre-trained face recognition models without full model access (i.e. black-box setting). A variety of methods have been proposed in literature for this task, but they have serious shortcomings such as a lack of realistic outputs and strong requirements for the data set and accessibility of the face recognition model. By analyzing the black-box inversion problem, we show that the conditional diffusion model loss naturally emerges and that we can effectively sample from the inverse distribution even without an identity-specific loss. Our method, named identity denoising diffusion probabilistic model (ID3PM), leverages the stochastic nature of the denoising diffusion process to produce high-quality, identity-preserving face images with various backgrounds, lighting, poses, and expressions. We demonstrate state-of-the-art performance in terms of identity preservation and diversity both qualitatively and quantitatively, and our method is the first black-box face recognition model inversion method that offers intuitive control over the generation process.

Distance measurements demonstrate distinctive scalability when used for relative state estimation in large-scale multi-robot systems. Despite the attractiveness of distance measurements, multi-robot relative state estimation based on distance measurements raises a tricky optimization problem, especially in the context of large-scale systems. Motivated by this, we aim to develop specialized computational techniques that enable robust and efficient estimation when deploying distance measurements at scale. We first reveal the commonality between the estimation problem and the one that finds realization of a sensor network, from which we draw crucial lesson to inspire the proposed methods. However, solving the latter problem in large-scale (still) requires distributed optimization schemes with scalability natures, efficient computational procedures, and fast convergence rates. Towards this goal, we propose a complementary pair of distributed computational techniques with the classical block coordinate descent (BCD) algorithm as a unified backbone. In the first method, we treat Burer-Monteiro factorization as a rank-restricted heuristic for rank-constrained semidefinite programming (SDP), where a specialized BCD-type algorithm that analytically solve each block update subproblem is employed. Although this method enables robust and (extremely) fast recovery of estimates from initial guesses, it inevitably fails as the initialization becomes disorganized. We therefore propose the second method, derived from a convex formulation named anchored edge-based semidefinite programming} (ESDP), to complement it, at the expense of a certain loss of efficiency. This formulation is structurally decomposable so that BCD can be naturally employed, where each subproblem is convex and (again) solved exactly...

Currently, truss tomato weighing and packaging require significant manual work. The main obstacle to automation lies in the difficulty of developing a reliable robotic grasping system for already harvested trusses. We propose a method to grasp trusses that are stacked in a crate with considerable clutter, which is how they are commonly stored and transported after harvest. The method consists of a deep learning-based vision system to first identify the individual trusses in the crate and then determine a suitable grasping location on the stem. To this end, we have introduced a grasp pose ranking algorithm with online learning capabilities. After selecting the most promising grasp pose, the robot executes a pinch grasp without needing touch sensors or geometric models. Lab experiments with a robotic manipulator equipped with an eye-in-hand RGB-D camera showed a 100% clearance rate when tasked to pick all trusses from a pile. 93% of the trusses were successfully grasped on the first try, while the remaining 7% required more attempts.

Discrete-choice models are a powerful framework for analyzing decision-making behavior to provide valuable insights for policymakers and businesses. Multinomial logit models (MNLs) with linear utility functions have been used in practice because they are ease to use and interpretable. Recently, MNLs with neural networks (e.g., ASU-DNN) have been developed, and they have achieved higher prediction accuracy in behavior choice than classical MNLs. However, these models lack interpretability owing to complex structures. We developed utility functions with a novel neural-network architecture based on generalized additive models, named generalized additive utility network ( GAUNet), for discrete-choice models. We evaluated the performance of the MNL with GAUNet using the trip survey data collected in Tokyo. Our models were comparable to ASU-DNN in accuracy and exhibited improved interpretability compared to previous models.

We study a class of scheduling problems, where each job is divided into a batch of unit-size tasks and these tasks can be executed in parallel on multiple servers with New-Better-than-Used (NBU) service time distributions. While many delay optimality results are available for single-server queueing systems, generalizing these results to the multi-server case has been challenging. This motivated us to investigate near delay-optimal scheduling of batch jobs in multi-server queueing systems. We consider three lowcomplexity scheduling policies: the Fewest Unassigned Tasks first (FUT) policy, the Earliest Due Date first (EDD) policy, and the First-Come, First-Served (FCFS) policy. We prove that for arbitrary number, batch sizes, arrival times, and due times of the jobs, these scheduling policies are near delay-optimal in stochastic ordering for minimizing three classes of delay metrics among all causal and non-preemptive policies. In particular, the FUT policy is within a constant additive delay gap from the optimum for minimizing the mean average delay, and the FCFS policy within twice of the optimum for minimizing the mean maximum delay and the mean p-norm of delay. The key proof tools are several novel samplepath orderings, which can be used to compare the sample-path delay of different policies in a near-optimal sense.

We present task-oriented Koopman-based control that utilizes end-to-end reinforcement learning and contrastive encoder to simultaneously learn the Koopman latent embedding, operator and associated linear controller within an iterative loop. By prioritizing the task cost as main objective for controller learning, we reduce the reliance of controller design on a well-identified model, which extends Koopman control beyond low-dimensional systems to high-dimensional, complex nonlinear systems, including pixel-based scenarios.

Vision-based formation control systems are attractive because they can use inexpensive sensors and can work in GPS-denied environments. The safety assurance for such systems is challenging: the vision component's accuracy depends on the environment in complicated ways, these errors propagate through the system and lead to incorrect control actions, and there exists no formal specification for end-to-end reasoning. We address this problem and propose a technique for safety assurance of vision-based formation control: First, we propose a scheme for constructing quantizers that are consistent with vision-based perception. Next, we show how the convergence analysis of a standard quantized consensus algorithm can be adapted for the constructed quantizers. We use the recently defined notion of perception contracts to create error bounds on the actual vision-based perception pipeline using sampled data from different ground truth states, environments, and weather conditions. Specifically, we use a quantizer in logarithmic polar coordinates, and we show that this quantizer is suitable for the constructed perception contracts for the vision-based position estimation, where the error worsens with respect to the absolute distance between agents. We build our formation control algorithm with this nonuniform quantizer, and we prove its convergence employing an existing result for quantized consensus.

北京阿比特科技有限公司