亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Evaluation of researchers' output is vital for hiring committees and funding bodies, and it is usually measured via their scientific productivity, citations, or a combined metric such as h-index. Assessing young researchers is more critical because it takes a while to get citations and increment of h-index. Hence, predicting the h-index can help to discover the researchers' scientific impact. In addition, identifying the influential factors to predict the scientific impact is helpful for researchers seeking solutions to improve it. This study investigates the effect of author, paper and venue-specific features on the future h-index. For this purpose, we used machine learning methods to predict the h-index and feature analysis techniques to advance the understanding of feature impact. Utilizing the bibliometric data in Scopus, we defined and extracted two main groups of features. The first relates to prior scientific impact, and we name it 'prior impact-based features' and includes the number of publications, received citations, and h-index. The second group is 'non-impact-based features' and contains the features related to author, co-authorship, paper, and venue characteristics. We explored their importance in predicting h-index for researchers in three different career phases. Also, we examine the temporal dimension of predicting performance for different feature categories to find out which features are more reliable for long- and short-term prediction. We referred to the gender of the authors to examine the role of this author's characteristics in the prediction task. Our findings showed that gender has a very slight effect in predicting the h-index. We found that non-impact-based features are more robust predictors for younger scholars than seniors in the short term. Also, prior impact-based features lose their power to predict more than other features in the long-term.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · 數學 · 講稿 · 社會計算 ·
2023 年 9 月 26 日

In this article we discuss how abstraction boundaries can help tame complexity in mathematical research, with the help of an interactive theorem prover. While many of the ideas we present here have been used implicitly by mathematicians for some time, we argue that the use of an interactive theorem prover introduces additional qualitative benefits in the implementation of these ideas.

Citation metrics are the best tools for research assessments. However, current metrics may be misleading in research systems that pursue simultaneously different goals, such as the advance of science and incremental innovations, because their publications have different citation distributions. We estimate the contribution to the progress of knowledge by studying only a limited number of the most cited papers, which are dominated by publications pursuing this progress. To field-normalize the metrics, we substitute the number of citations by the rank position of papers from one country in the global list of papers. Using synthetic series of lognormally distributed numbers, we developed the Rk-index, which is calculated from the global ranks of the 10 highest numbers in each series, and demonstrate its equivalence to the number of papers in top percentiles, P_top0.1% and P_top0.01% . In real cases, the Rk-index is simple and easy to calculate, and evaluates the contribution to the progress of knowledge better than less stringent metrics. Although further research is needed, rank analysis of the most cited papers is a promising approach for research evaluation. It is also demonstrated that, for this purpose, domestic and collaborative papers should be studied independently.

The aim of this study was to develop a model to accurately identify corresponding points between organ segmentations of different patients for radiotherapy applications. A model for simultaneous correspondence and interpolation estimation in 3D shapes was trained with head and neck organ segmentations from planning CT scans. We then extended the original model to incorporate imaging information using two approaches: 1) extracting features directly from image patches, and 2) including the mean square error between patches as part of the loss function. The correspondence and interpolation performance were evaluated using the geodesic error, chamfer distance and conformal distortion metrics, as well as distances between anatomical landmarks. Each of the models produced significantly better correspondences than the baseline non-rigid registration approach. The original model performed similarly to the model with direct inclusion of image features. The best performing model configuration incorporated imaging information as part of the loss function which produced more anatomically plausible correspondences. We will use the best performing model to identify corresponding anatomical points on organs to improve spatial normalisation, an important step in outcome modelling, or as an initialisation for anatomically informed registrations. All our code is publicly available at //github.com/rrr-uom-projects/Unsup-RT-Corr-Net

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

Clustering of publication networks is an efficient way to obtain classifications of large collections of research publications. Such classifications can be used to, e.g., detect research topics, normalize citation relations, or explore the publication output of a unit. Citation networks can be created using a variety of approaches. Best practices to obtain classifications using clustering have been investigated, in particular the performance of different publication-publication relatedness measures. However, evaluation of different approaches to normalization of citation relations have not been explored to the same extent. In this paper, we evaluate five approaches to normalization of direct citation relations with respect to clustering solution quality in four data sets. A sixth approach is evaluated using no normalization. To assess the quality of clustering solutions, we use three measures. (1) We compare the clustering solution to the reference lists of a set of publications using the Adjusted Rand Index. (2) Using the Sihouette width measure, we quantity to which extent the publications have relations to other clusters than the one they have been assigned to. (3) We propose a measure that captures publications that have probably been inaccurately assigned. The results clearly show that normalization is preferred over unnormalized direct citation relations. Furthermore, the results indicate that the fractional normalization approach, which can be considered the standard approach, causes inaccurate assignments. The geometric normalization approach has a similar performance as the fractional approach regarding Adjusted Rand Index and Silhouette width but leads to fewer inaccurate assignments. We therefore believe that the geometric approach may be preferred over the fractional approach.

This paper investigates the problem of estimating the larger location parameter of two general location families from a decision-theoretic perspective. In this estimation problem, we use the criteria of minimizing the risk function and the Pitman closeness under a general bowl-shaped loss function. Inadmissibility of a general location and equivariant estimators is provided. We prove that a natural estimator (analogue of the BLEE of unordered location parameters) is inadmissible, under certain conditions on underlying densities, and propose a dominating estimator. We also derive a class of improved estimators using the Kubokawa's IERD approach and observe that the boundary estimator of this class is the Brewster-Zidek type estimator. Additionally, under the generalized Pitman criterion, we show that the natural estimator is inadmissible and obtain improved estimators. The results are implemented for different loss functions, and explicit expressions for the dominating estimators are provided. We explore the applications of these results to for exponential and normal distribution under specified loss functions. A simulation is also conducted to compare the risk performance of the proposed estimators. Finally, we present a real-life data analysis to illustrate the practical applications of the paper's findings.

Discovering causal relationships from observational data is a fundamental yet challenging task. In some applications, it may suffice to learn the causal features of a given response variable, instead of learning the entire underlying causal structure. Invariant causal prediction (ICP, Peters et al., 2016) is a method for causal feature selection which requires data from heterogeneous settings. ICP assumes that the mechanism for generating the response from its direct causes is the same in all settings and exploits this invariance to output a subset of the causal features. The framework of ICP has been extended to general additive noise models and to nonparametric settings using conditional independence testing. However, nonparametric conditional independence testing often suffers from low power (or poor type I error control) and the aforementioned parametric models are not suitable for applications in which the response is not measured on a continuous scale, but rather reflects categories or counts. To bridge this gap, we develop ICP in the context of transformation models (TRAMs), allowing for continuous, categorical, count-type, and uninformatively censored responses (we show that, in general, these model classes do not allow for identifiability when there is no exogenous heterogeneity). We propose TRAM-GCM, a test for invariance of a subset of covariates, based on the expected conditional covariance between environments and score residuals which satisfies uniform asymptotic level guarantees. For the special case of linear shift TRAMs, we propose an additional invariance test, TRAM-Wald, based on the Wald statistic. We implement both proposed methods in the open-source R package "tramicp" and show in simulations that under the correct model specification, our approach empirically yields higher power than nonparametric ICP based on conditional independence testing.

In the linear regression model, the minimum l2-norm interpolant estimator has received much attention since it was proved to be consistent even though it fits noisy data perfectly under some condition on the covariance matrix $\Sigma$ of the input vector, known as benign overfitting. Motivated by this phenomenon, we study the generalization property of this estimator from a geometrical viewpoint. Our main results extend and improve the convergence rates as well as the deviation probability from [Tsigler and Bartlett]. Our proof differs from the classical bias/variance analysis and is based on the self-induced regularization property introduced in [Bartlett, Montanari and Rakhlin]: the minimum l2-norm interpolant estimator can be written as a sum of a ridge estimator and an overfitting component. The two geometrical properties of random Gaussian matrices at the heart of our analysis are the Dvoretsky-Milman theorem and isomorphic and restricted isomorphic properties. In particular, the Dvoretsky dimension appearing naturally in our geometrical viewpoint, coincides with the effective rank and is the key tool for handling the behavior of the design matrix restricted to the sub-space where overfitting happens. We extend these results to heavy-tailed scenarii proving the universality of this phenomenon beyond exponential moment assumptions. This phenomenon is unknown before and is widely believed to be a significant challenge. This follows from an anistropic version of the probabilistic Dvoretsky-Milman theorem that holds for heavy-tailed vectors which is of independent interest.

We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司