亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This report describes our approach to design and evaluate a software stack for a race car capable of achieving competitive driving performance in the different disciplines of the Formula Student Driverless. By using a 360{\deg} LiDAR and optionally three cameras, we reliably recognize the plastic cones that mark the track boundaries at distances of around 35 m, enabling us to drive at the physical limits of the car. Using a GraphSLAM algorithm, we are able to map these cones with a root-mean-square error of less than 15 cm while driving at speeds of over 70 kph on a narrow track. The high-precision map is used in the trajectory planning to detect the lane boundaries using Delaunay triangulation and a parametric cubic spline. We calculate an optimized trajectory using a minimum curvature approach together with a GGS-diagram that takes the aerodynamics at different velocities into account. To track the target path with accelerations of up to 1.6 g, the control system is split into a PI controller for longitudinal control and model predictive controller for lateral control. Additionally, a low-level optimal control allocation is used. The software is realized in ROS C++ and tested in a custom simulation, as well as on the actual race track.

相關內容

Reconfigurable Intelligent Surfaces (RIS) are a new paradigm which, with judicious deployment and alignment, can enable more favorable propagation environments and better wireless network design. As such, they can offer a number of potential benefits for next generation wireless systems including improved coverage, better interference management and even security. In this paper, we consider an uplink next generation wireless system where each user is assisted with an RIS. We study the uplink power control problem in this distributed RIS-assisted wireless network. Specifically, we aim to minimize total uplink transmit power of all the users subject to each user's reliable communication requirements at the base station by a joint design of power, receiver filter and RIS phase matrices. We propose an iterative power control algorithm, combined with a successive convex approximation technique to solve the problem with non-convex phase constraints. Numerical results illustrate that distributed RIS assistance leads to uplink power savings when direct links are weak.

Image inpainting is a restoration method that reconstructs missing image parts. However, a carefully selected mask of known pixels that yield a high quality inpainting can also act as a sparse image representation. This challenging spatial optimisation problem is essential for practical applications such as compression. So far, it has been almost exclusively adressed by model-based approaches. First attempts with neural networks seem promising, but are tailored towards specific inpainting operators or require postprocessing. To address this issue, we propose the first generative adversarial network (GAN) for spatial inpainting data optimisation. In contrast to previous approaches, it allows joint training of an inpainting generator and a corresponding mask optimisation network. With a Wasserstein distance, we ensure that our inpainting results accurately reflect the statistics of natural images. This yields significant improvements in visual quality and speed over conventional stochastic models. It also outperforms current spatial optimisation networks.

In many applications, we want to influence the decisions of independent agents by designing incentives for their actions. We revisit a fundamental problem in this area, called GAME IMPLEMENTATION: Given a game in standard form and a set of desired strategies, can we design a set of payment promises such that if the players take the payment promises into account, then all undominated strategies are desired? Furthermore, we aim to minimize the cost, that is, the worst-case amount of payments. We study the tractability of computing such payment promises and determine more closely what obstructions we may have to overcome in doing so. We show that GAME IMPLEMENTATION is NP-hard even for two players, solving in particular a long open question (Eidenbenz et al. 2011) and suggesting more restrictions are necessary to obtain tractability results. We thus study the regime in which players have only a small constant number of strategies and obtain the following. First, this case remains NP-hard even if each player's utility depends only on three others. Second, we repair a flawed efficient algorithm for the case of both small number of strategies and small number of players. Among further results, we characterize sets of desired strategies that can be implemented at zero cost as a kind of stable core of the game.

This paper proposes embedded Gaussian Process Barrier States (GP-BaS), a methodology to safely control unmodeled dynamics of nonlinear system using Bayesian learning. Gaussian Processes (GPs) are used to model the dynamics of the safety-critical system, which is subsequently used in the GP-BaS model. We derive the barrier state dynamics utilizing the GP posterior, which is used to construct a safety embedded Gaussian process dynamical model (GPDM). We show that the safety-critical system can be controlled to remain inside the safe region as long as we can design a controller that renders the BaS-GPDM's trajectories bounded (or asymptotically stable). The proposed approach overcomes various limitations in early attempts at combining GPs with barrier functions due to the abstention of restrictive assumptions such as linearity of the system with respect to control, relative degree of the constraints and number or nature of constraints. This work is implemented on various examples for trajectory optimization and control including optimal stabilization of unstable linear system and safe trajectory optimization of a Dubins vehicle navigating through an obstacle course and on a quadrotor in an obstacle avoidance task using GP differentiable dynamic programming (GP-DDP). The proposed framework is capable of maintaining safe optimization and control of unmodeled dynamics and is purely data driven.

A simultaneously transmitting and reflecting intelligent surface (STARS) enabled integrated sensing and communications (ISAC) framework is proposed, where the whole space is divided by STARS into a sensing space and a communication space. A novel sensing-at-STARS structure, where dedicated sensors are installed at the STARS, is proposed to address the significant path loss and clutter interference for sensing. The Cramer-Rao bound (CRB) of the 2-dimension (2D) direction-of-arrivals (DOAs) estimation of the sensing target is derived, which is then minimized subject to the minimum communication requirement. A novel approach is proposed to transform the complicated CRB minimization problem into a trackable modified Fisher information matrix (FIM) optimization problem. Both independent and coupled phase-shift models of STARS are investigated: 1) For the independent phase-shift model, to address the coupling of ISAC waveform and STARS coefficient in the modified FIM, an efficient double-loop iterative algorithm based on the penalty dual decomposition (PDD) framework is conceived; 2) For the coupled phase-shift model, based on the PDD framework, a low complexity alternating optimization algorithm is proposed to tackle coupled phase-shift constants by alternatively optimizing amplitude and phase-shift coefficients in closed-form. Finally, the numerical results demonstrate that: 1) STARS significantly outperforms the conventional RIS in CRB under the communication constraints; 2) The coupled phase-shift model achieves comparable performance to the independent one for low communication requirements or sufficient STARS elements; 3) It is more efficient to increase the number of passive elements of STARS rather than the active elements of the sensor; 4) High sensing accuracy can be achieved by STARS using the practical 2D maximum likelihood estimator compared with the conventional RIS.

Security still remains an afterthought in modern Electronic Design Automation (EDA) tools, which solely focus on enhancing performance and reducing the chip size. Typically, the security analysis is conducted by hand, leading to vulnerabilities in the design remaining unnoticed. Security-aware EDA tools assist the designer in the identification and removal of security threats while keeping performance and area in mind. State-of-the-art approaches utilize information flow analysis to spot unintended information leakages in design structures. However, the classification of such threats is binary, resulting in negligible leakages being listed as well. A novel quantitative analysis allows the application of a metric to determine a numeric value for a leakage. Nonetheless, current approximations to quantify the leakage are still prone to overlooking leakages. The mathematical model 2D-QModel introduced in this work aims to overcome this shortcoming. Additionally, as previous work only includes a limited threat model, multiple threat models can be applied using the provided approach. Open-source benchmarks are used to show the capabilities of 2D-QModel to identify hardware Trojans in the design while ignoring insignificant leakages.

Building an accurate model of travel behaviour based on individuals' characteristics and built environment attributes is of importance for policy-making and transportation planning. Recent experiments with big data and Machine Learning (ML) algorithms toward a better travel behaviour analysis have mainly overlooked socially disadvantaged groups. Accordingly, in this study, we explore the travel behaviour responses of low-income individuals to transit investments in the Greater Toronto and Hamilton Area, Canada, using statistical and ML models. We first investigate how the model choice affects the prediction of transit use by the low-income group. This step includes comparing the predictive performance of traditional and ML algorithms and then evaluating a transit investment policy by contrasting the predicted activities and the spatial distribution of transit trips generated by vulnerable households after improving accessibility. We also empirically investigate the proposed transit investment by each algorithm and compare it with the city of Brampton's future transportation plan. While, unsurprisingly, the ML algorithms outperform classical models, there are still doubts about using them due to interpretability concerns. Hence, we adopt recent local and global model-agnostic interpretation tools to interpret how the model arrives at its predictions. Our findings reveal the great potential of ML algorithms for enhanced travel behaviour predictions for low-income strata without considerably sacrificing interpretability.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

Game theory has by now found numerous applications in various fields, including economics, industry, jurisprudence, and artificial intelligence, where each player only cares about its own interest in a noncooperative or cooperative manner, but without obvious malice to other players. However, in many practical applications, such as poker, chess, evader pursuing, drug interdiction, coast guard, cyber-security, and national defense, players often have apparently adversarial stances, that is, selfish actions of each player inevitably or intentionally inflict loss or wreak havoc on other players. Along this line, this paper provides a systematic survey on three main game models widely employed in adversarial games, i.e., zero-sum normal-form and extensive-form games, Stackelberg (security) games, zero-sum differential games, from an array of perspectives, including basic knowledge of game models, (approximate) equilibrium concepts, problem classifications, research frontiers, (approximate) optimal strategy seeking techniques, prevailing algorithms, and practical applications. Finally, promising future research directions are also discussed for relevant adversarial games.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

北京阿比特科技有限公司