Systematic Literature Reviews (SLRs) have become the foundation of evidence-based studies, enabling researchers to identify, classify, and combine existing studies based on specific research questions. Conducting an SLR is largely a manual process. Over the previous years, researchers have made significant progress in automating certain phases of the SLR process, aiming to reduce the effort and time needed to carry out high-quality SLRs. However, there is still a lack of AI agent-based models that automate the entire SLR process. To this end, we introduce a novel multi-AI agent model designed to fully automate the process of conducting an SLR. By utilizing the capabilities of Large Language Models (LLMs), our proposed model streamlines the review process, enhancing efficiency and accuracy. The model operates through a user-friendly interface where researchers input their topic, and in response, the model generates a search string used to retrieve relevant academic papers. Subsequently, an inclusive and exclusive filtering process is applied, focusing on titles relevant to the specific research area. The model then autonomously summarizes the abstracts of these papers, retaining only those directly related to the field of study. In the final phase, the model conducts a thorough analysis of the selected papers concerning predefined research questions. We also evaluated the proposed model by sharing it with ten competent software engineering researchers for testing and analysis. The researchers expressed strong satisfaction with the proposed model and provided feedback for further improvement. The code for this project can be found on the GitHub repository at //github.com/GPT-Laboratory/SLR-automation.
Calls to make scientific research more open have gained traction with a range of societal stakeholders. Open Science practices include but are not limited to the early sharing of results via preprints and openly sharing outputs such as data and code to make research more reproducible and extensible. Existing evidence shows that adopting Open Science practices has effects in several domains. In this study, we investigate whether adopting one or more Open Science practices leads to significantly higher citations for an associated publication, which is one form of academic impact. We use a novel dataset known as Open Science Indicators, produced by PLOS and DataSeer, which includes all PLOS publications from 2018 to 2023 as well as a comparison group sampled from the PMC Open Access Subset. In total, we analyze circa 122'000 publications. We calculate publication and author-level citation indicators and use a broad set of control variables to isolate the effect of Open Science Indicators on received citations. We show that Open Science practices are adopted to different degrees across scientific disciplines. We find that the early release of a publication as a preprint correlates with a significant positive citation advantage of about 20.2% on average. We also find that sharing data in an online repository correlates with a smaller yet still positive citation advantage of 4.3% on average. However, we do not find a significant citation advantage for sharing code. Further research is needed on additional or alternative measures of impact beyond citations. Our results are likely to be of interest to researchers, as well as publishers, research funders, and policymakers.
Symbolic Regression (SR) is a widely studied field of research that aims to infer symbolic expressions from data. A popular approach for SR is the Sparse Identification of Nonlinear Dynamical Systems (\sindy) framework, which uses sparse regression to identify governing equations from data. This study introduces an enhanced method, Nested SINDy, that aims to increase the expressivity of the SINDy approach thanks to a nested structure. Indeed, traditional symbolic regression and system identification methods often fail with complex systems that cannot be easily described analytically. Nested SINDy builds on the SINDy framework by introducing additional layers before and after the core SINDy layer. This allows the method to identify symbolic representations for a wider range of systems, including those with compositions and products of functions. We demonstrate the ability of the Nested SINDy approach to accurately find symbolic expressions for simple systems, such as basic trigonometric functions, and sparse (false but accurate) analytical representations for more complex systems. Our results highlight Nested SINDy's potential as a tool for symbolic regression, surpassing the traditional SINDy approach in terms of expressivity. However, we also note the challenges in the optimization process for Nested SINDy and suggest future research directions, including the designing of a more robust methodology for the optimization process. This study proves that Nested SINDy can effectively discover symbolic representations of dynamical systems from data, offering new opportunities for understanding complex systems through data-driven methods.
Progress in machine learning and artificial intelligence has spurred the widespread adoption of automated decision systems (ADS). An extensive literature explores what conditions must be met for these systems' decisions to be fair. However, questions of legitimacy -- why those in control of ADS are entitled to make such decisions -- have received comparatively little attention. This paper shows that when such questions are raised theorists often incorrectly conflate legitimacy with either public acceptance or other substantive values such as fairness, accuracy, expertise or efficiency. In search of better theories, we conduct a critical analysis of the philosophical literature on the legitimacy of the state, focusing on consent, public reason, and democratic authorisation. This analysis reveals that the prevailing understanding of legitimacy in analytical political philosophy is also ill-suited to the task of establishing whether and when ADS are legitimate. The paper thus clarifies expectations for theories of ADS legitimacy and charts a path for a future research programme on the topic.
In recent years, research involving human participants has been critical to advances in artificial intelligence (AI) and machine learning (ML), particularly in the areas of conversational, human-compatible, and cooperative AI. For example, around 12% and 6% of publications at recent AAAI and NeurIPS conferences indicate the collection of original human data, respectively. Yet AI and ML researchers lack guidelines for ethical, transparent research practices with human participants. Fewer than one out of every four of these AAAI and NeurIPS papers provide details of ethical review, the collection of informed consent, or participant compensation. This paper aims to bridge this gap by exploring normative similarities and differences between AI research and related fields that involve human participants. Though psychology, human-computer interaction, and other adjacent fields offer historic lessons and helpful insights, AI research raises several specific concerns$\unicode{x2014}$namely, participatory design, crowdsourced dataset development, and an expansive role of corporations$\unicode{x2014}$that necessitate a contextual ethics framework. To address these concerns, this paper outlines a set of guidelines for ethical and transparent practice with human participants in AI and ML research. These guidelines can be found in Section 4 on pp. 4$\unicode{x2013}$7.
This study introduces a novel method for irony detection, applying Large Language Models (LLMs) with prompt-based learning to facilitate emotion-centric text augmentation. Traditional irony detection techniques typically fall short due to their reliance on static linguistic features and predefined knowledge bases, often overlooking the nuanced emotional dimensions integral to irony. In contrast, our methodology augments the detection process by integrating subtle emotional cues, augmented through LLMs, into three benchmark pre-trained NLP models - BERT, T5, and GPT-2 - which are widely recognized as foundational in irony detection. We assessed our method using the SemEval-2018 Task 3 dataset and observed substantial enhancements in irony detection capabilities.
In (Dzanic, J. Comp. Phys., 508:113010, 2024), a limiting approach for high-order discontinuous Galerkin schemes was introduced which allowed for imposing constraints on the solution continuously (i.e., everywhere within the element). While exact for linear constraint functionals, this approach only imposed a sufficient (but not the minimum necessary) amount of limiting for nonlinear constraint functionals. This short note shows how this limiting approach can be extended to allow exactness for general nonlinear quasiconcave constraint functionals through a nonlinear limiting procedure, reducing unnecessary numerical dissipation. Some examples are shown for nonlinear pressure and entropy constraints in the compressible gas dynamics equations, where both analytic and iterative approaches are used.
Motivation: Curation of literature in life sciences is a growing challenge. The continued increase in the rate of publication, coupled with the relatively fixed number of curators worldwide presents a major challenge to developers of biomedical knowledgebases. Very few knowledgebases have resources to scale to the whole relevant literature and all have to prioritise their efforts. Results: In this work, we take a first step to alleviating the lack of curator time in RNA science by generating summaries of literature for non-coding RNAs using large language models (LLMs). We demonstrate that high-quality, factually accurate summaries with accurate references can be automatically generated from the literature using a commercial LLM and a chain of prompts and checks. Manual assessment was carried out for a subset of summaries, with the majority being rated extremely high quality. We also applied the most commonly used automated evaluation approaches, finding that they do not correlate with human assessment. Finally, we apply our tool to a selection of over 4,600 ncRNAs and make the generated summaries available via the RNAcentral resource. We conclude that automated literature summarization is feasible with the current generation of LLMs, provided careful prompting and automated checking are applied. Availability: Code used to produce these summaries can be found here: //github.com/RNAcentral/litscan-summarization and the dataset of contexts and summaries can be found here: //huggingface.co/datasets/RNAcentral/litsumm-v1. Summaries are also displayed on the RNA report pages in RNAcentral (//rnacentral.org/)
In this review paper, we delve into the realm of Large Language Models (LLMs), covering their foundational principles, diverse applications, and nuanced training processes. The article sheds light on the mechanics of in-context learning and a spectrum of fine-tuning approaches, with a special focus on methods that optimize efficiency in parameter usage. Additionally, it explores how LLMs can be more closely aligned with human preferences through innovative reinforcement learning frameworks and other novel methods that incorporate human feedback. The article also examines the emerging technique of retrieval augmented generation, integrating external knowledge into LLMs. The ethical dimensions of LLM deployment are discussed, underscoring the need for mindful and responsible application. Concluding with a perspective on future research trajectories, this review offers a succinct yet comprehensive overview of the current state and emerging trends in the evolving landscape of LLMs, serving as an insightful guide for both researchers and practitioners in artificial intelligence.
Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.
Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.