This study introduces a novel method for irony detection, applying Large Language Models (LLMs) with prompt-based learning to facilitate emotion-centric text augmentation. Traditional irony detection techniques typically fall short due to their reliance on static linguistic features and predefined knowledge bases, often overlooking the nuanced emotional dimensions integral to irony. In contrast, our methodology augments the detection process by integrating subtle emotional cues, augmented through LLMs, into three benchmark pre-trained NLP models - BERT, T5, and GPT-2 - which are widely recognized as foundational in irony detection. We assessed our method using the SemEval-2018 Task 3 dataset and observed substantial enhancements in irony detection capabilities.
This article aims to study efficient/trace optimal designs for crossover trials with multiple responses recorded from each subject in the time periods. A multivariate fixed effects model is proposed with direct and carryover effects corresponding to the multiple responses. The corresponding error dispersion matrix is chosen to be either of the proportional or the generalized Markov covariance type, permitting the existence of direct and cross-correlations within and between the multiple responses. The corresponding information matrices for direct effects under the two types of dispersions are used to determine efficient designs. The efficiency of orthogonal array designs of Type $I$ and strength $2$ is investigated for a wide choice of covariance functions, namely, Mat($0.5$), Mat($1.5$) and Mat($\infty$). To motivate these multivariate crossover designs, a gene expression dataset in a $3 \times 3$ framework is utilized.
Diffusion models have emerged as effective distribution estimators in vision, language, and reinforcement learning, but their use as priors in downstream tasks poses an intractable posterior inference problem. This paper studies amortized sampling of the posterior over data, $\mathbf{x}\sim p^{\rm post}(\mathbf{x})\propto p(\mathbf{x})r(\mathbf{x})$, in a model that consists of a diffusion generative model prior $p(\mathbf{x})$ and a black-box constraint or likelihood function $r(\mathbf{x})$. We state and prove the asymptotic correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from this posterior, a problem that existing methods solve only approximately or in restricted cases. Relative trajectory balance arises from the generative flow network perspective on diffusion models, which allows the use of deep reinforcement learning techniques to improve mode coverage. Experiments illustrate the broad potential of unbiased inference of arbitrary posteriors under diffusion priors: in vision (classifier guidance), language (infilling under a discrete diffusion LLM), and multimodal data (text-to-image generation). Beyond generative modeling, we apply relative trajectory balance to the problem of continuous control with a score-based behavior prior, achieving state-of-the-art results on benchmarks in offline reinforcement learning.
Generative AI offers significant opportunities for language learning. Tools like ChatGPT can provide informal second language practice through chats in written or voice forms, with the learner specifying through prompts conversational parameters such as proficiency level, language register, and discussion topics. AI can be instructed to give corrective feedback, create practice exercises, or develop an extended study plan. Instructors can use AI to build learning and assessment materials in a variety of media. AI is likely to make immersive technologies more powerful and versatile, moving away from scripted interactions. For both learners and teachers, it is important to understand the limitations of AI systems that arise from their purely statistical model of human language, which limits their ability to deal with nuanced social and cultural aspects of language use. Additionally, there are ethical concerns over how AI systems are created as well as practical constraints in their use, especially for less privileged populations. The power and versatility of AI tools are likely to turn them into valuable and constant companions in many peoples lives (akin to smartphones), creating a close connection that goes beyond simple tool use. Ecological theories such as sociomaterialism are helpful in examining the shared agency that develops through close user-AI interactions, as are the perspectives on human-object relations from Indigenous cultures.
This study explores the impact of adversarial perturbations on Convolutional Neural Networks (CNNs) with the aim of enhancing the understanding of their underlying mechanisms. Despite numerous defense methods proposed in the literature, there is still an incomplete understanding of this phenomenon. Instead of treating the entire model as vulnerable, we propose that specific feature maps learned during training contribute to the overall vulnerability. To investigate how the hidden representations learned by a CNN affect its vulnerability, we introduce the Adversarial Intervention framework. Experiments were conducted on models trained on three well-known computer vision datasets, subjecting them to attacks of different nature. Our focus centers on the effects that adversarial perturbations to a model's initial layer have on the overall behavior of the model. Empirical results revealed compelling insights: a) perturbing selected channel combinations in shallow layers causes significant disruptions; b) the channel combinations most responsible for the disruptions are common among different types of attacks; c) despite shared vulnerable combinations of channels, different attacks affect hidden representations with varying magnitudes; d) there exists a positive correlation between a kernel's magnitude and its vulnerability. In conclusion, this work introduces a novel framework to study the vulnerability of a CNN model to adversarial perturbations, revealing insights that contribute to a deeper understanding of the phenomenon. The identified properties pave the way for the development of efficient ad-hoc defense mechanisms in future applications.
Classical Markov Chain Monte Carlo methods have been essential for simulating statistical physical systems and have proven well applicable to other systems with complex degrees of freedom. Motivated by the statistical physics origins, Chen, Kastoryano, and Gily\'en [CKG23] proposed a continuous-time quantum thermodynamic analog to Glauber dynamic that is (i) exactly detailed balanced, (ii) efficiently implementable, and (iii) quasi-local for geometrically local systems. Physically, their construction gives a smooth variant of the Davies' generator derived from weak system-bath interaction. In this work, we give an efficiently implementable discrete-time quantum counterpart to Metropolis sampling that also enjoys the desirable features (i)-(iii). Also, we give an alternative highly coherent quantum generalization of detailed balanced dynamics that resembles another physically derived master equation, and propose a smooth interpolation between this and earlier constructions. We study generic properties of all constructions, including the uniqueness of the fixed-point and the locality of the resulting operators. We hope our results provide a systematic approach to the possible quantum generalizations of classical Glauber and Metropolis dynamics.
This paper presents a novel approach for constructing graph neural networks equivariant to 2D rotations and translations and leveraging them as PDE surrogates on non-gridded domains. We show that aligning the representations with the principal axis allows us to sidestep many constraints while preserving SE(2) equivariance. By applying our model as a surrogate for fluid flow simulations and conducting thorough benchmarks against non-equivariant models, we demonstrate significant gains in terms of both data efficiency and accuracy.
Robotic exploration has long captivated researchers aiming to map complex environments efficiently. Techniques such as potential fields and frontier exploration have traditionally been employed in this pursuit, primarily focusing on solitary agents. Recent advancements have shifted towards optimizing exploration efficiency through multiagent systems. However, many existing approaches overlook critical real-world factors, such as broadcast range limitations, communication costs, and coverage overlap. This paper addresses these gaps by proposing a distributed maze exploration strategy (CU-LVP) that assumes constrained broadcast ranges and utilizes Voronoi diagrams for better area partitioning. By adapting traditional multiagent methods to distributed environments with limited broadcast ranges, this study evaluates their performance across diverse maze topologies, demonstrating the efficacy and practical applicability of the proposed method. The code and experimental results supporting this study are available in the following repository: //github.com/manouslinard/multiagent-exploration/.
We introduce a method for computing immediately human interpretable yet accurate classifiers from tabular data. The classifiers obtained are short Boolean formulas, computed via first discretizing the original data and then using feature selection coupled with a very fast algorithm for producing the best possible Boolean classifier for the setting. We demonstrate the approach via 13 experiments, obtaining results with accuracies comparable to ones obtained via random forests, XGBoost, and existing results for the same datasets in the literature. In most cases, the accuracy of our method is in fact similar to that of the reference methods, even though the main objective of our study is the immediate interpretability of our classifiers. We also prove a new result on the probability that the classifier we obtain from real-life data corresponds to the ideally best classifier with respect to the background distribution the data comes from.
Within distributed learning, workers typically compute gradients on their assigned dataset chunks and send them to the parameter server (PS), which aggregates them to compute either an exact or approximate version of $\nabla L$ (gradient of the loss function $L$). However, in large-scale clusters, many workers are slower than their promised speed or even failure-prone. A gradient coding solution introduces redundancy within the assignment of chunks to the workers and uses coding theoretic ideas to allow the PS to recover $\nabla L$ (exactly or approximately), even in the presence of stragglers. Unfortunately, most existing gradient coding protocols are inefficient from a computation perspective as they coarsely classify workers as operational or failed; the potentially valuable work performed by slow workers (partial stragglers) is ignored. In this work, we present novel gradient coding protocols that judiciously leverage the work performed by partial stragglers. Our protocols are efficient from a computation and communication perspective and numerically stable. For an important class of chunk assignments, we present efficient algorithms for optimizing the relative ordering of chunks within the workers; this ordering affects the overall execution time. For exact gradient reconstruction, our protocol is around $2\times$ faster than the original class of protocols and for approximate gradient reconstruction, the mean-squared-error of our reconstructed gradient is several orders of magnitude better.
Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.