FPGAs are increasingly being deployed in the cloud to accelerate diverse applications. They are to be shared among multiple tenants to improve the total cost of ownership. Partial reconfiguration technology enables multi-tenancy on FPGA by partitioning it into regions, each hosting a specific application's accelerator. However, the region's size can not be changed once they are defined, resulting in the underutilization of FPGA resources. This paper argues to divide the acceleration requirements of an application into multiple small computation modules. The devised FPGA shell can reconfigure the available PR regions with those modules and enable them to communicate with each other over Crossbar interconnect with the Wishbone bus interface. For each PR region being reconfigured, it updates the register file with the valid destination addresses and the bandwidth allocation of the interconnect. Any invalid communication request originating from the Wishbone master interface is masked in the corresponding master port of the crossbar. The allocated bandwidth for the PR region is ensured by the weighted round-robin arbiter in the slave port of the crossbar. Finally, the envisioned resource manager can increase or decrease the number of PR regions allocated to an application based on its acceleration requirements and PR regions' availability.
Since a vast number of tables can be easily collected from web pages, spreadsheets, PDFs, and various other document types, a flurry of table pre-training frameworks have been proposed following the success of text and images, and they have achieved new state-of-the-arts on various tasks such as table question answering, table type recognition, column relation classification, table search, formula prediction, etc. To fully use the supervision signals in unlabeled tables, a variety of pre-training objectives have been designed and evaluated, for example, denoising cell values, predicting numerical relationships, and implicitly executing SQLs. And to best leverage the characteristics of (semi-)structured tables, various tabular language models, particularly with specially-designed attention mechanisms, have been explored. Since tables usually appear and interact with free-form text, table pre-training usually takes the form of table-text joint pre-training, which attracts significant research interests from multiple domains. This survey aims to provide a comprehensive review of different model designs, pre-training objectives, and downstream tasks for table pre-training, and we further share our thoughts and vision on existing challenges and future opportunities.
The concept of federated learning (FL) was first proposed by Google in 2016. Thereafter, FL has been widely studied for the feasibility of application in various fields due to its potential to make full use of data without compromising the privacy. However, limited by the capacity of wireless data transmission, the employment of federated learning on mobile devices has been making slow progress in practical. The development and commercialization of the 5th generation (5G) mobile networks has shed some light on this. In this paper, we analyze the challenges of existing federated learning schemes for mobile devices and propose a novel cross-device federated learning framework, which utilizes the anonymous communication technology and ring signature to protect the privacy of participants while reducing the computation overhead of mobile devices participating in FL. In addition, our scheme implements a contribution-based incentive mechanism to encourage mobile users to participate in FL. We also give a case study of autonomous driving. Finally, we present the performance evaluation of the proposed scheme and discuss some open issues in federated learning.
In this article we suggest two discretization methods based on isogeometric analysis (IGA) for planar linear elasticity. On the one hand, we apply the well-known ansatz of weakly imposed symmetry for the stress tensor and obtain a well-posed mixed formulation. Such modified mixed problems have been already studied by different authors. But we concentrate on the exploitation of IGA results to handle also curved boundary geometries. On the other hand, we consider the more complicated situation of strong symmetry, i.e. we discretize the mixed weak form determined by the so-called Hellinger-Reissner variational principle. We show the existence of suitable approximate fields leading to an inf-sup stable saddle-point problem. For both discretization approaches we prove convergence statements and in case of weak symmetry we illustrate the approximation behavior by means of several numerical experiments.
Federated learning (FL) has been recognized as a viable distributed learning paradigm which trains a machine learning model collaboratively with massive mobile devices in the wireless edge while protecting user privacy. Although various communication schemes have been proposed to expedite the FL process, most of them have assumed ideal wireless channels which provide reliable and lossless communication links between the server and mobile clients. Unfortunately, in practical systems with limited radio resources such as constraint on the training latency and constraints on the transmission power and bandwidth, transmission of a large number of model parameters inevitably suffers from quantization errors (QE) and transmission outage (TO). In this paper, we consider such non-ideal wireless channels, and carry out the first analysis showing that the FL convergence can be severely jeopardized by TO and QE, but intriguingly can be alleviated if the clients have uniform outage probabilities. These insightful results motivate us to propose a robust FL scheme, named FedTOE, which performs joint allocation of wireless resources and quantization bits across the clients to minimize the QE while making the clients have the same TO probability. Extensive experimental results are presented to show the superior performance of FedTOE for deep learning-based classification tasks with transmission latency constraints.
Federated Learning has promised a new approach to resolve the challenges in machine learning by bringing computation to the data. The popularity of the approach has led to rapid progress in the algorithmic aspects and the emergence of systems capable of simulating Federated Learning. State of art systems in Federated Learning support a single node aggregator that is insufficient to train a large corpus of devices or train larger-sized models. As the model size or the number of devices increase the single node aggregator incurs memory and computation burden while performing fusion tasks. It also faces communication bottlenecks when a large number of model updates are sent to a single node. We classify the workload for the aggregator into categories and propose a new aggregation service for handling each load. Our aggregation service is based on a holistic approach that chooses the best solution depending on the model update size and the number of clients. Our system provides a fault-tolerant, robust and efficient aggregation solution utilizing existing parallel and distributed frameworks. Through evaluation, we show the shortcomings of the state of art approaches and how a single solution is not suitable for all aggregation requirements. We also provide a comparison of current frameworks with our system through extensive experiments.
At the same time that AI and machine learning are becoming central to human life, their potential harms become more vivid. In the presence of such drawbacks, a critical question one needs to address before using these data-driven technologies to make a decision is whether to trust their outcomes. Aligned with recent efforts on data-centric AI, this paper proposes a novel approach to address the trust question through the lens of data, by associating data sets with distrust quantification that specify their scope of use for predicting future query points. The distrust values raise warning signals when a prediction based on a dataset is questionable and are valuable alongside other techniques for trustworthy AI. We propose novel algorithms for computing the distrust values in the neighborhood of a query point efficiently and effectively. Learning the necessary components of the measures from the data itself, our sub-linear algorithms scale to very large and multi-dimensional settings. Besides demonstrating the efficiency of our algorithms, our extensive experiments reflect a consistent correlation between distrust values and model performance. This underscores the message that when the distrust value of a query point is high, the prediction outcome should be discarded or at least not considered for critical decisions.
We introduce the first algorithm for distributed decision-making that provably balances the trade-off of centralization, for global near-optimality, vs. decentralization, for near-minimal on-board computation, communication, and memory resources. We are motivated by the future of autonomy that involves heterogeneous robots collaborating in complex~tasks, such as image covering, target tracking, and area monitoring. Current algorithms, such as consensus algorithms, are insufficient to fulfill this future: they achieve distributed communication only, at the expense of high communication, computation, and memory overloads. A shift to resource-aware algorithms is needed, that can account for each robot's on-board resources, independently. We provide the first resource-aware algorithm, Resource-Aware distributed Greedy (RAG). We focus on maximization problems involving monotone and "doubly" submodular functions, a diminishing returns property. RAG has near-minimal on-board resource requirements. Each agent can afford to run the algorithm by adjusting the size of its neighborhood, even if that means selecting actions in complete isolation. RAG has provable approximation performance, where each agent can independently determine its contribution. All in all, RAG is the first algorithm to quantify the trade-off of centralization, for global near-optimality, vs. decentralization, for near-minimal on-board resource requirements. To capture the trade-off, we introduce the notion of Centralization Of Information among non-Neighbors (COIN). We validate RAG in simulated scenarios of image covering with mobile robots.
It is shown, with two sets of indicators that separately load on two distinct factors, independent of one another conditional on the past, that if it is the case that at least one of the factors causally affects the other, then, in many settings, the process will converge to a factor model in which a single factor will suffice to capture the covariance structure among the indicators. Factor analysis with one wave of data can then not distinguish between factor models with a single factor versus those with two factors that are causally related. Therefore, unless causal relations between factors can be ruled out a priori, alleged empirical evidence from one-wave factor analysis for a single factor still leaves open the possibilities of a single factor or of two factors that causally affect one another. The implications for interpreting the factor structure of psychological scales, such as self-report scales for anxiety and depression, or for happiness and purpose, are discussed. The results are further illustrated through simulations to gain insight into the practical implications of the results in more realistic settings prior to the convergence of the processes. Some further generalizations to an arbitrary number of underlying factors are noted.
In variable selection, a selection rule that prescribes the permissible sets of selected variables (called a "selection dictionary") is desirable due to the inherent structural constraints among the candidate variables. The methods that can incorporate such restrictions can improve model interpretability and prediction accuracy. Penalized regression can integrate selection rules by assigning the coefficients to different groups and then applying penalties to the groups. However, no general framework has been proposed to formalize selection rules and their applications. In this work, we establish a framework for structured variable selection that can incorporate universal structural constraints. We develop a mathematical language for constructing arbitrary selection rules, where the selection dictionary is formally defined. We show that all selection rules can be represented as a combination of operations on constructs, which can be used to identify the related selection dictionary. One may then apply some criteria to select the best model. We show that the theoretical framework can help to identify the grouping structure in existing penalized regression methods. In addition, we formulate structured variable selection into mixed-integer optimization problems which can be solved by existing software. Finally, we discuss the significance of the framework in the context of statistics.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.