We introduce a new numerical method, based on Bernoulli polynomials, for solving multiterm variable-order fractional differential equations. The variable-order fractional derivative was considered in the Caputo sense, while the Riemann--Liouville integral operator was used to give approximations for the unknown function and its variable-order derivatives. An operational matrix of variable-order fractional integration was introduced for the Bernoulli functions. By assuming that the solution of the problem is sufficiently smooth, we approximated a given order of its derivative using Bernoulli polynomials. Then, we used the introduced operational matrix to find some approximations for the unknown function and its derivatives. Using these approximations and some collocation points, the problem was reduced to the solution of a system of nonlinear algebraic equations. An error estimate is given for the approximate solution obtained by the proposed method. Finally, five illustrative examples were considered to demonstrate the applicability and high accuracy of the proposed technique, comparing our results with the ones obtained by existing methods in the literature and making clear the novelty of the work. The numerical results showed that the new method is efficient, giving high-accuracy approximate solutions even with a small number of basis functions and when the solution to the problem is not infinitely differentiable, providing better results and a smaller number of basis functions when compared to state-of-the-art methods.
We prove upper and lower bounds on the minimal spherical dispersion, improving upon previous estimates obtained by Rote and Tichy [Spherical dispersion with an application to polygonal approximation of curves, Anz. \"Osterreich. Akad. Wiss. Math.-Natur. Kl. 132 (1995), 3--10]. In particular, we see that the inverse $N(\varepsilon,d)$ of the minimal spherical dispersion is, for fixed $\varepsilon>0$, linear in the dimension $d$ of the ambient space. We also derive upper and lower bounds on the expected dispersion for points chosen independently and uniformly at random from the Euclidean unit sphere. In terms of the corresponding inverse $\widetilde{N}(\varepsilon,d)$, our bounds are optimal with respect to the dependence on $\varepsilon$.
We couple the L1 discretization for Caputo derivative in time with spectral Galerkin method in space to devise a scheme that solves quasilinear subdiffusion equations. Both the diffusivity and the source are allowed to be nonlinear functions of the solution. We prove method's stability and convergence with spectral accuracy in space. The temporal order depends on solution's regularity in time. Further, we support our results with numerical simulations that utilize parallelism for spatial discretization. Moreover, as a side result we find asymptotic exact values of error constants along with their remainders for discretizations of Caputo derivative and fractional integrals. These constants are the smallest possible which improves the previously established results from the literature.
In this paper, the existence and uniqueness of the fixed point for the product of two nonlinear operator in Banach algebra is discussed. In addition, an approximation method of the fixed point of hybrid nonlinear equations in Banach algebras is established. This method is applied to two interesting different types of functional equations. In addition, to illustrate the applicability of our results we give some numerical examples.
A numerical algorithm is presented to solve a benchmark problem proposed by Hemker. The algorithm incorporates asymptotic information into the design of appropriate piecewise-uniform Shishkin meshes. Moreover, different co-ordinate systems are utilized due to the different geometries and associated layer structures that are involved in this problem. Numerical results are presented to demonstrate the effectiveness of the proposed numerical algorithm.
The Granular Instrumental Variables (GIV) methodology exploits panels with factor error structures to construct instruments to estimate structural time series models with endogeneity even after controlling for latent factors. We extend the GIV methodology in several dimensions. First, we extend the identification procedure to a large $N$ and large $T$ framework, which depends on the asymptotic Herfindahl index of the size distribution of $N$ cross-sectional units. Second, we treat both the factors and loadings as unknown and show that the sampling error in the estimated instrument and factors is negligible when considering the limiting distribution of the structural parameters. Third, we show that the sampling error in the high-dimensional precision matrix is negligible in our estimation algorithm. Fourth, we overidentify the structural parameters with additional constructed instruments, which leads to efficiency gains. Monte Carlo evidence is presented to support our asymptotic theory and application to the global crude oil market leads to new results.
The asymptotic stable region and long-time decay rate of solutions to linear homogeneous Caputo time fractional ordinary differential equations (F-ODEs) are known to be completely determined by the eigenvalues of the coefficient matrix. Very different from the exponential decay of solutions to classical ODEs, solutions of F-ODEs decay only polynomially, leading to the so-called Mittag-Leffler stability, which was already extended to semi-linear F-ODEs with small perturbations. This work is mainly devoted to the qualitative analysis of the long-time behavior of numerical solutions. By applying the singularity analysis of generating functions developed by Flajolet and Odlyzko (SIAM J. Disc. Math. 3 (1990), 216-240), we are able to prove that both $\mathcal{L}$1 scheme and strong $A$-stable fractional linear multistep methods (F-LMMs) can preserve the numerical Mittag-Leffler stability for linear homogeneous F-ODEs exactly as in the continuous case. Through an improved estimate of the discrete fractional resolvent operator, we show that strong $A$-stable F-LMMs are also Mittag-Leffler stable for semi-linear F-ODEs under small perturbations. For the numerical schemes based on $\alpha$-difference approximation to Caputo derivative, we establish the Mittag-Leffler stability for semi-linear problems by making use of properties of the Poisson transformation and the decay rate of the continuous fractional resolvent operator. Numerical experiments are presented for several typical time fractional evolutional equations, including time fractional sub-diffusion equations, fractional linear system and semi-linear F-ODEs. All the numerical results exhibit the typical long-time polynomial decay rate, which is fully consistent with our theoretical predictions.
Recently, a new concept called multiplicative differential was introduced by Ellingsen et al. Inspired by this pioneering work, power functions with low c-differential uniformity were constructed. Wang et al. defined the c-differential spectrum of a power function [27]. In this paper, we present some properties of the c-differential spectrum of a power function. Then we apply these properties to investigate the c-differential spectra of some power functions. A new class of APcN function is also obtained.
Stochastic PDE eigenvalue problems are useful models for quantifying the uncertainty in several applications from the physical sciences and engineering, e.g., structural vibration analysis, the criticality of a nuclear reactor or photonic crystal structures. In this paper we present a simple multilevel quasi-Monte Carlo (MLQMC) method for approximating the expectation of the minimal eigenvalue of an elliptic eigenvalue problem with coefficients that are given as a series expansion of countably-many stochastic parameters. The MLQMC algorithm is based on a hierarchy of discretisations of the spatial domain and truncations of the dimension of the stochastic parameter domain. To approximate the expectations, randomly shifted lattice rules are employed. This paper is primarily dedicated to giving a rigorous analysis of the error of this algorithm. A key step in the error analysis requires bounds on the mixed derivatives of the eigenfunction with respect to both the stochastic and spatial variables simultaneously. Under stronger smoothness assumptions on the parametric dependence, our analysis also extends to multilevel higher-order quasi-Monte Carlo rules. An accompanying paper [Gilbert and Scheichl, 2022], focusses on practical extensions of the MLQMC algorithm to improve efficiency, and presents numerical results.
This paper makes the first attempt to apply newly developed upwind GFDM for the meshless solution of two-phase porous flow equations. In the presented method, node cloud is used to flexibly discretize the computational domain, instead of complicated mesh generation, and the computational domain is divided into overlapping sub-domains centered on each node. Combining with moving least square approximation and local Taylor expansion, derivatives of oil-phase pressure at the central node are approximated by a generalized difference operator in the local subdomain. By introducing the first-order upwind scheme of phase permeability, and combining the discrete boundary conditions, fully implicit GFDM discrete nonlinear equations of the immiscible two-phase porous flow are obtained and solved by the nonlinear solver based on the Newton iteration method with the automatic differentiation technology, to avoid the additional computational cost and possible computational instability caused by sequentially coupled scheme. Two numerical examples are implemented to test the computational performances of the presented method. Detailed error analysis finds the two sources of the calculation error, and points out the significant effect of the symmetry or uniformity of the node allocation in the node influence domain on the accuracy of the generalized difference operator, and the radius of node influence domain should be as small as possible to achieve high calculation accuracy, which is a significant difference between the studied parabolic two-phase porous flow problem and the elliptic equation previously studied by GFDM. In all, the upwind GFDM with the fully implicit nonlinear solver and related analysis about computational performances given in this work may provide a critical reference for developing a general-purpose meshless numerical simulator for porous flow problems.
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.