Recently, a new concept called multiplicative differential was introduced by Ellingsen et al. Inspired by this pioneering work, power functions with low c-differential uniformity were constructed. Wang et al. defined the c-differential spectrum of a power function [27]. In this paper, we present some properties of the c-differential spectrum of a power function. Then we apply these properties to investigate the c-differential spectra of some power functions. A new class of APcN function is also obtained.
In this paper, we develop a Monte Carlo method for solving PDEs involving an integral fractional Laplacian (IFL) in multiple dimensions. We first construct a new Feynman-Kac representation based on the Green function for the fractional Laplacian operator on the unit ball in arbitrary dimensions. Inspired by the "walk-on-spheres" algorithm proposed in [24], we extend our algorithm for solving fractional PDEs in the complex domain. Then, we can compute the expectation of a multi-dimensional random variable with a known density function to obtain the numerical solution efficiently. The proposed algorithm finds it remarkably efficient in solving fractional PDEs: it only needs to evaluate the integrals of expectation form over a series of inside ball tangent boundaries with the known Green function. Moreover, we carry out the error estimates of the proposed method for the $n$-dimensional unit ball. Finally, ample numerical results are presented to demonstrate the robustness and effectiveness of this approach for fractional PDEs in unit disk and complex domains, and even in ten-dimensional unit balls.
A central quest of probing is to uncover how pre-trained models encode a linguistic property within their representations. An encoding, however, might be spurious-i.e., the model might not rely on it when making predictions. In this paper, we try to find encodings that the model actually uses, introducing a usage-based probing setup. We first choose a behavioral task which cannot be solved without using the linguistic property. Then, we attempt to remove the property by intervening on the model's representations. We contend that, if an encoding is used by the model, its removal should harm the performance on the chosen behavioral task. As a case study, we focus on how BERT encodes grammatical number, and on how it uses this encoding to solve the number agreement task. Experimentally, we find that BERT relies on a linear encoding of grammatical number to produce the correct behavioral output. We also find that BERT uses a separate encoding of grammatical number for nouns and verbs. Finally, we identify in which layers information about grammatical number is transferred from a noun to its head verb.
In this paper we generalize Dillon's switching method to characterize the exact $c$-differential uniformity of functions constructed via this method. More precisely, we modify some PcN/APcN and other functions with known $c$-differential uniformity in a controllable number of coordinates to render more such functions. We present several applications of the method in constructing PcN and APcN functions with respect to all $c\neq 1$. As a byproduct, we generalize some result of [Y. Wu, N. Li, X. Zeng, {\em New PcN and APcN functions over finite fields}, Designs Codes Crypt. 89 (2021), 2637--2651]. Computational results rendering functions with low differential uniformity, as well as, other good cryptographic properties are sprinkled throughout the paper.
We extend the Deep Galerkin Method (DGM) introduced in Sirignano and Spiliopoulos (2018)} to solve a number of partial differential equations (PDEs) that arise in the context of optimal stochastic control and mean field games. First, we consider PDEs where the function is constrained to be positive and integrate to unity, as is the case with Fokker-Planck equations. Our approach involves reparameterizing the solution as the exponential of a neural network appropriately normalized to ensure both requirements are satisfied. This then gives rise to nonlinear a partial integro-differential equation (PIDE) where the integral appearing in the equation is handled by a novel application of importance sampling. Secondly, we tackle a number of Hamilton-Jacobi-Bellman (HJB) equations that appear in stochastic optimal control problems. The key contribution is that these equations are approached in their unsimplified primal form which includes an optimization problem as part of the equation. We extend the DGM algorithm to solve for the value function and the optimal control \simultaneously by characterizing both as deep neural networks. Training the networks is performed by taking alternating stochastic gradient descent steps for the two functions, a technique inspired by the policy improvement algorithms (PIA).
Let $m$ be a positive integer and $p$ a prime. In this paper, we investigate the differential properties of the power mapping $x^{p^m+2}$ over $\mathbb{F}_{p^n}$, where $n=2m$ or $n=2m-1$. For the case $n=2m$, by transforming the derivative equation of $x^{p^m+2}$ and studying some related equations, we completely determine the differential spectrum of this power mapping. For the case $n=2m-1$, the derivative equation can be transformed to a polynomial of degree $p+3$. The problem is more difficult and we obtain partial results about the differential spectrum of $x^{p^m+2}$.
In this paper, the Lie symmetry analysis is proposed for a space-time convection-diffusion fractional differential equations with the Riemann-Liouville derivative by (2+1) independent variables and one dependent variable. We find a reduction form of our governed fractional differential equation using the similarity solution of our Lie symmetry. One-dimensional optimal system of Lie symmetry algebras is found. We present a computational method via the spectral method based on Bernstein's operational matrices to solve the two-dimensional fractional heat equation with some initial conditions.
Most existing works of polar codes focus on the analysis of block error probability. However, in many scenarios, bit error probability is also important for evaluating the performance of channel codes. In this paper, we establish a new framework to analyze the bit error probability of polar codes. Specifically, by revisiting the error event of bit-channel, we first introduce the conditional bit error probability as a metric to evaluate the reliability of bit-channel for both systematic and non-systematic polar codes. Guided by the concept of polar subcode, we then derive an upper bound on the conditional bit error probability of each bit-channel, and accordingly, an upper bound on the bit error probability of polar codes. Based on these, two types of construction metrics aiming at minimizing the bit error probability of polar codes are proposed, which are of linear computational complexity and explicit forms. Simulation results show that the polar codes constructed by the proposed methods can outperform those constructed by the conventional methods.
We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.