Out of the participants in a randomized experiment with anticipated heterogeneous treatment effects, is it possible to identify which subjects have a positive treatment effect? While subgroup analysis has received attention, claims about individual participants are much more challenging. We frame the problem in terms of multiple hypothesis testing: each individual has a null hypothesis (stating that the potential outcomes are equal, for example) and we aim to identify those for whom the null is false (the treatment potential outcome stochastically dominates the control one, for example). We develop a novel algorithm that identifies such a subset, with nonasymptotic control of the false discovery rate (FDR). Our algorithm allows for interaction -- a human data scientist (or a computer program) may adaptively guide the algorithm in a data-dependent manner to gain power. We show how to extend the methods to observational settings and achieve a type of doubly-robust FDR control. We also propose several extensions: (a) relaxing the null to nonpositive effects, (b) moving from unpaired to paired samples, and (c) subgroup identification. We demonstrate via numerical experiments and theoretical analysis that the proposed method has valid FDR control in finite samples and reasonably high identification power.
Elements of neural networks, both biological and artificial, can be described by their selectivity for specific cognitive features. Understanding these features is important for understanding the inner workings of neural networks. For a living system, such as a neuron, whose response to a stimulus is unknown and not differentiable, the only way to reveal these features is through a feedback loop that exposes it to a large set of different stimuli. The properties of these stimuli should be varied iteratively in order to maximize the neuronal response. To utilize this feedback loop for a biological neural network, it is important to run it quickly and efficiently in order to reach the stimuli that maximizes certain neurons' activation with the least number of iterations possible. Here we present a framework with an efficient design for such a loop. We successfully tested it on an artificial spiking neural network (SNN), which is a model that simulates the asynchronous spiking activity of neurons in living brains. Our optimization method for activation maximization is based on the low-rank Tensor Train decomposition of the discrete activation function. The optimization space is the latent parameter space of images generated by SN-GAN or VQ-VAE generative models. To our knowledge, this is the first time that effective AM has been applied to SNNs. We track changes in the optimal stimuli for artificial neurons during training and show that highly selective neurons can form already in the early epochs of training and in the early layers of a convolutional spiking network. This formation of refined optimal stimuli is associated with an increase in classification accuracy. Some neurons, especially in the deeper layers, may gradually change the concepts they are selective for during learning, potentially explaining their importance for model performance.
Effective clustering of biomedical data is crucial in precision medicine, enabling accurate stratifiction of patients or samples. However, the growth in availability of high-dimensional categorical data, including `omics data, necessitates computationally efficient clustering algorithms. We present VICatMix, a variational Bayesian finite mixture model designed for the clustering of categorical data. The use of variational inference (VI) in its training allows the model to outperform competitors in term of efficiency, while maintaining high accuracy. VICatMix furthermore performs variable selection, enhancing its performance on high-dimensional, noisy data. The proposed model incorporates summarisation and model averaging to mitigate poor local optima in VI, allowing for improved estimation of the true number of clusters simultaneously with feature saliency. We demonstrate the performance of VICatMix with both simulated and real-world data, including applications to datasets from The Cancer Genome Atlas (TCGA), showing its use in cancer subtyping and driver gene discovery. We demonstrate VICatMix's utility in integrative cluster analysis with different `omics datasets, enabling the discovery of novel subtypes. \textbf{Availability:} VICatMix is freely available as an R package, incorporating C++ for faster computation, at \url{//github.com/j-ackierao/VICatMix}.
In the context of regression-type statistical models, the inclusion of some ordered factors among the explanatory variables requires the conversion of qualitative levels to numeric components of the linear predictor. The present note represent a follow-up of a methodology proposed by Azzalini (2023} for constructing numeric scores assigned to the factors levels. The aim of the present supplement it to allow additional flexibility of the mapping from ordered levels and numeric scores.
The emergence of cooperative behavior, despite natural selection favoring rational self-interest, presents a significant evolutionary puzzle. Evolutionary game theory elucidates why cooperative behavior can be advantageous for survival. However, the impact of non-uniformity in the frequency of actions, particularly when actions are altered in the short term, has received little scholarly attention. To demonstrate the relationship between the non-uniformity in the frequency of actions and the evolution of cooperation, we conducted multi-agent simulations of evolutionary games. In our model, each agent performs actions in a chain-reaction, resulting in a non-uniform distribution of the number of actions. To achieve a variety of non-uniform action frequency, we introduced two types of chain-reaction rules: one where an agent's actions trigger subsequent actions, and another where an agent's actions depend on the actions of others. Our results revealed that cooperation evolves more effectively in scenarios with even slight non-uniformity in action frequency compared to completely uniform cases. In addition, scenarios where agents' actions are primarily triggered by their own previous actions more effectively support cooperation, whereas those triggered by others' actions are less effective. This implies that a few highly active individuals contribute positively to cooperation, while the tendency to follow others' actions can hinder it.
We introduce an algorithm that simplifies the construction of efficient estimators, making them accessible to a broader audience. 'Dimple' takes as input computer code representing a parameter of interest and outputs an efficient estimator. Unlike standard approaches, it does not require users to derive a functional derivative known as the efficient influence function. Dimple avoids this task by applying automatic differentiation to the statistical functional of interest. Doing so requires expressing this functional as a composition of primitives satisfying a novel differentiability condition. Dimple also uses this composition to determine the nuisances it must estimate. In software, primitives can be implemented independently of one another and reused across different estimation problems. We provide a proof-of-concept Python implementation and showcase through examples how it allows users to go from parameter specification to efficient estimation with just a few lines of code.
Estimating parameters of a diffusion process given continuous-time observations of the process via maximum likelihood approaches or, online, via stochastic gradient descent or Kalman filter formulations constitutes a well-established research area. It has also been established previously that these techniques are, in general, not robust to perturbations in the data in the form of temporal correlations. While the subject is relatively well understood and appropriate modifications have been suggested in the context of multi-scale diffusion processes and their reduced model equations, we consider here an alternative setting where a second-order diffusion process in positions and velocities is only observed via its positions. In this note, we propose a simple modification to standard stochastic gradient descent and Kalman filter formulations, which eliminates the arising systematic estimation biases. The modification can be extended to standard maximum likelihood approaches and avoids computation of previously proposed correction terms.
We propose a test for the identification of causal effects in mediation and dynamic treatment models that is based on two sets of observed variables, namely covariates to be controlled for and suspected instruments, building on the test by Huber and Kueck (2022) for single treatment models. We consider models with a sequential assignment of a treatment and a mediator to assess the direct treatment effect (net of the mediator), the indirect treatment effect (via the mediator), or the joint effect of both treatment and mediator. We establish testable conditions for identifying such effects in observational data. These conditions jointly imply (1) the exogeneity of the treatment and the mediator conditional on covariates and (2) the validity of distinct instruments for the treatment and the mediator, meaning that the instruments do not directly affect the outcome (other than through the treatment or mediator) and are unconfounded given the covariates. Our framework extends to post-treatment sample selection or attrition problems when replacing the mediator by a selection indicator for observing the outcome, enabling joint testing of the selectivity of treatment and attrition. We propose a machine learning-based test to control for covariates in a data-driven manner and analyze its finite sample performance in a simulation study. Additionally, we apply our method to Slovak labor market data and find that our testable implications are not rejected for a sequence of training programs typically considered in dynamic treatment evaluations.
Difference-in-differences (DID) is a popular approach to identify the causal effects of treatments and policies in the presence of unmeasured confounding. DID identifies the sample average treatment effect in the treated (SATT). However, a goal of such research is often to inform decision-making in target populations outside the treated sample. Transportability methods have been developed to extend inferences from study samples to external target populations; these methods have primarily been developed and applied in settings where identification is based on conditional independence between the treatment and potential outcomes, such as in a randomized trial. We present a novel approach to identifying and estimating effects in a target population, based on DID conducted in a study sample that differs from the target population. We present a range of assumptions under which one may identify causal effects in the target population and employ causal diagrams to illustrate these assumptions. In most realistic settings, results depend critically on the assumption that any unmeasured confounders are not effect measure modifiers on the scale of the effect of interest (e.g., risk difference, odds ratio). We develop several estimators of transported effects, including g-computation, inverse odds weighting, and a doubly robust estimator based on the efficient influence function. Simulation results support theoretical properties of the proposed estimators. As an example, we apply our approach to study the effects of a 2018 US federal smoke-free public housing law on air quality in public housing across the US, using data from a DID study conducted in New York City alone.
Identifying low-dimensional structure in high-dimensional probability measures is an essential pre-processing step for efficient sampling. We introduce a method for identifying and approximating a target measure $\pi$ as a perturbation of a given reference measure $\mu$ along a few significant directions of $\mathbb{R}^{d}$. The reference measure can be a Gaussian or a nonlinear transformation of a Gaussian, as commonly arising in generative modeling. Our method extends prior work on minimizing majorizations of the Kullback--Leibler divergence to identify optimal approximations within this class of measures. Our main contribution unveils a connection between the \emph{dimensional} logarithmic Sobolev inequality (LSI) and approximations with this ansatz. Specifically, when the target and reference are both Gaussian, we show that minimizing the dimensional LSI is equivalent to minimizing the KL divergence restricted to this ansatz. For general non-Gaussian measures, the dimensional LSI produces majorants that uniformly improve on previous majorants for gradient-based dimension reduction. We further demonstrate the applicability of this analysis to the squared Hellinger distance, where analogous reasoning shows that the dimensional Poincar\'e inequality offers improved bounds.
For the fractional Laplacian of variable order, an efficient and accurate numerical evaluation in multi-dimension is a challenge for the nature of a singular integral. We propose a simple and easy-to-implement finite difference scheme for the multi-dimensional variable-order fractional Laplacian defined by a hypersingular integral. We prove that the scheme is of second-order convergence and apply the developed finite difference scheme to solve various equations with the variable-order fractional Laplacian. We present a fast solver with quasi-linear complexity of the scheme for computing variable-order fractional Laplacian and corresponding PDEs. Several numerical examples demonstrate the accuracy and efficiency of our algorithm and verify our theory.