In this work, we address the problem of 4D facial expressions generation. This is usually addressed by animating a neutral 3D face to reach an expression peak, and then get back to the neutral state. In the real world though, people show more complex expressions, and switch from one expression to another. We thus propose a new model that generates transitions between different expressions, and synthesizes long and composed 4D expressions. This involves three sub-problems: (i) modeling the temporal dynamics of expressions, (ii) learning transitions between them, and (iii) deforming a generic mesh. We propose to encode the temporal evolution of expressions using the motion of a set of 3D landmarks, that we learn to generate by training a manifold-valued GAN (Motion3DGAN). To allow the generation of composed expressions, this model accepts two labels encoding the starting and the ending expressions. The final sequence of meshes is generated by a Sparse2Dense mesh Decoder (S2D-Dec) that maps the landmark displacements to a dense, per-vertex displacement of a known mesh topology. By explicitly working with motion trajectories, the model is totally independent from the identity. Extensive experiments on five public datasets show that our proposed approach brings significant improvements with respect to previous solutions, while retaining good generalization to unseen data.
Theoretical understanding of the behavior of infinitely-wide neural networks has been rapidly developed for various architectures due to the celebrated mean-field theory. However, there is a lack of a clear, intuitive framework for extending our understanding to finite networks that are of more practical and realistic importance. In the present contribution, we demonstrate that the behavior of properly initialized neural networks can be understood in terms of universal critical phenomena in absorbing phase transitions. More specifically, we study the order-to-chaos transition in the fully-connected feedforward neural networks and the convolutional ones to show that (i) there is a well-defined transition from the ordered state to the chaotics state even for the finite networks, and (ii) difference in architecture is reflected in that of the universality class of the transition. Remarkably, the finite-size scaling can also be successfully applied, indicating that intuitive phenomenological argument could lead us to semi-quantitative description of the signal propagation dynamics.
Deep Implicit Functions (DIFs) have gained popularity in 3D computer vision due to their compactness and continuous representation capabilities. However, addressing dense correspondences and semantic relationships across DIF-encoded shapes remains a critical challenge, limiting their applications in texture transfer and shape analysis. Moreover, recent endeavors in 3D shape generation using DIFs often neglect correspondence and topology preservation. This paper presents HNDF (Hybrid Neural Diffeomorphic Flow), a method that implicitly learns the underlying representation and decomposes intricate dense correspondences into explicitly axis-aligned triplane features. To avoid suboptimal representations trapped in local minima, we propose hybrid supervision that captures both local and global correspondences. Unlike conventional approaches that directly generate new 3D shapes, we further explore the idea of shape generation with deformed template shape via diffeomorphic flows, where the deformation is encoded by the generated triplane features. Leveraging a pre-existing 2D diffusion model, we produce high-quality and diverse 3D diffeomorphic flows through generated triplanes features, ensuring topological consistency with the template shape. Extensive experiments on medical image organ segmentation datasets evaluate the effectiveness of HNDF in 3D shape representation and generation.
We present a novel alignment-before-generation approach to tackle the challenging task of generating general 3D shapes based on 2D images or texts. Directly learning a conditional generative model from images or texts to 3D shapes is prone to producing inconsistent results with the conditions because 3D shapes have an additional dimension whose distribution significantly differs from that of 2D images and texts. To bridge the domain gap among the three modalities and facilitate multi-modal-conditioned 3D shape generation, we explore representing 3D shapes in a shape-image-text-aligned space. Our framework comprises two models: a Shape-Image-Text-Aligned Variational Auto-Encoder (SITA-VAE) and a conditional Aligned Shape Latent Diffusion Model (ASLDM). The former model encodes the 3D shapes into the shape latent space aligned to the image and text and reconstructs the fine-grained 3D neural fields corresponding to given shape embeddings via the transformer-based decoder. The latter model learns a probabilistic mapping function from the image or text space to the latent shape space. Our extensive experiments demonstrate that our proposed approach can generate higher-quality and more diverse 3D shapes that better semantically conform to the visual or textural conditional inputs, validating the effectiveness of the shape-image-text-aligned space for cross-modality 3D shape generation.
Demystifying complex human-ground interactions is essential for accurate and realistic 3D human motion reconstruction from RGB videos, as it ensures consistency between the humans and the ground plane. Prior methods have modeled human-ground interactions either implicitly or in a sparse manner, often resulting in unrealistic and incorrect motions when faced with noise and uncertainty. In contrast, our approach explicitly represents these interactions in a dense and continuous manner. To this end, we propose a novel Ground-aware Motion Model for 3D Human Motion Reconstruction, named GraMMaR, which jointly learns the distribution of transitions in both pose and interaction between every joint and ground plane at each time step of a motion sequence. It is trained to explicitly promote consistency between the motion and distance change towards the ground. After training, we establish a joint optimization strategy that utilizes GraMMaR as a dual-prior, regularizing the optimization towards the space of plausible ground-aware motions. This leads to realistic and coherent motion reconstruction, irrespective of the assumed or learned ground plane. Through extensive evaluation on the AMASS and AIST++ datasets, our model demonstrates good generalization and discriminating abilities in challenging cases including complex and ambiguous human-ground interactions. The code will be released.
Multiple systems estimation is a standard approach to quantifying hidden populations where data sources are based on lists of known cases. A typical modelling approach is to fit a Poisson loglinear model to the numbers of cases observed in each possible combination of the lists. It is necessary to decide which interaction parameters to include in the model, and information criterion approaches are often used for model selection. Difficulties in the context of multiple systems estimation may arise due to sparse or nil counts based on the intersection of lists, and care must be taken when information criterion approaches are used for model selection due to issues relating to the existence of estimates and identifiability of the model. Confidence intervals are often reported conditional on the model selected, providing an over-optimistic impression of the accuracy of the estimation. A bootstrap approach is a natural way to account for the model selection procedure. However, because the model selection step has to be carried out for every bootstrap replication, there may be a high or even prohibitive computational burden. We explore the merit of modifying the model selection procedure in the bootstrap to look only among a subset of models, chosen on the basis of their information criterion score on the original data. This provides large computational gains with little apparent effect on inference. Another model selection approach considered and investigated is a downhill search approach among models, possibly with multiple starting points.
The Gaussian graphical model (GGM) incorporates an undirected graph to represent the conditional dependence between variables, with the precision matrix encoding partial correlation between pair of variables given the others. To achieve flexible and accurate estimation and inference of GGM, we propose the novel method FLAG, which utilizes the random effects model for pairwise conditional regression to estimate the precision matrix and applies statistical tests to recover the graph. Compared with existing methods, FLAG has several unique advantages: (i) it provides accurate estimation without sparsity assumptions on the precision matrix, (ii) it allows for element-wise inference of the precision matrix, (iii) it achieves computational efficiency by developing an efficient PX-EM algorithm and a MM algorithm accelerated with low-rank updates, and (iv) it enables joint estimation of multiple graphs using FLAG-Meta or FLAG-CA. The proposed methods are evaluated using various simulation settings and real data applications, including gene expression in the human brain, term association in university websites, and stock prices in the U.S. financial market. The results demonstrate that FLAG and its extensions provide accurate precision estimation and graph recovery.
The line coverage problem is to find efficient routes for coverage of linear features by one or more resource-constrained robots. Linear features model environments such as road networks, power lines, and oil and gas pipelines. We define two modes of travel for robots: servicing and deadheading. A robot services a feature if it performs task-specific actions, e.g., taking images, as it traverses the feature; otherwise, it is deadheading. Traversing the environment incurs costs (e.g., travel time) and demands on resources (e.g., battery life). Servicing and deadheading can have different cost and demand functions, and we further permit them to be direction dependent. We model the environment as a graph and provide an integer linear program. As the problem is NP-hard, we develop a fast and efficient heuristic algorithm, Merge-Embed-Merge (MEM). By exploiting the constructive property of the MEM algorithm, we develop algorithms for line coverage of large graphs with multiple depots. Furthermore, we efficiently incorporate turning costs and nonholonomic constraints into the algorithm. We benchmark the algorithms on road networks and demonstrate them in experiments using aerial robots.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.