亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The crossed random-effects model is widely used in applied statistics, finding applications in various fields such as longitudinal studies, e-commerce, and recommender systems, among others. However, these models encounter scalability challenges, as the computational time grows disproportionately with the number of data points, typically following a cubic root relationship $(N^{(3/2)}$ or worse) with $N$. Our inspiration for addressing this issue comes from observing the recommender system employed by an online clothing retailer. Our dataset comprises over 700,000 clients, 5,000 items, and 5,000,000 measurements. When applying the maximum likelihood approach to fit crossed random effects, computational inefficiency becomes a significant concern, limiting the applicability of this approach in large-scale settings. To tackle the scalability issues, previous research by Ghosh et al. (2022a) and Ghosh et al. (2022b) has explored linear and logistic regression models utilizing fixed-effect features based on client and item variables, while incorporating random intercept terms for clients and items. In this study, we present a more generalized version of the problem, allowing random effect sizes/slopes. This extension enables us to capture the variability in effect size among both clients and items. Importantly, we have developed a scalable solution to address the aforementioned problem and have empirically demonstrated the consistency of our estimates. Specifically, as the number of data points increases, our estimates converge towards the true parameters. To validate our approach, we implement the proposed algorithm using Stitch Fix data.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 數據集 · 分解的 · 模型評估 · Facebook AI Research ·
2023 年 9 月 19 日

Missing diversity, equity, and inclusion elements in affective computing datasets directly affect the accuracy and fairness of emotion recognition algorithms across different groups. A literature review reveals how affective computing systems may work differently for different groups due to, for instance, mental health conditions impacting facial expressions and speech or age-related changes in facial appearance and health. Our work analyzes existing affective computing datasets and highlights a disconcerting lack of diversity in current affective computing datasets regarding race, sex/gender, age, and (mental) health representation. By emphasizing the need for more inclusive sampling strategies and standardized documentation of demographic factors in datasets, this paper provides recommendations and calls for greater attention to inclusivity and consideration of societal consequences in affective computing research to promote ethical and accurate outcomes in this emerging field.

Inference principles are postulated within statistics, they are not usually derived from any underlying physical constraints on real world observers. An exception to this rule is that in the context of partially observable information engines decision making can be based solely on physical arguments. An inference principle can be derived from minimization of the lower bound on average dissipation [Phys. Rev. Lett., 124(5), 050601], which is achievable with a quasi-static process. Thermodynamically rational decision strategies can be computed algorithmically with the resulting approach. Here, we use this to study an example of binary decision making under uncertainty that is very simple, yet just interesting enough to be non-trivial: observations are either entirely uninformative, or they carry complete certainty about the variable that needs to be known for successful energy harvesting. Solutions found algorithmically can be expressed in terms of parameterized soft partitions of the observable space. This allows for their interpretation, as well as for the analytical calculation of all quantities that characterize the decision problem and the thermodynamically rational strategies.

Recently, conditional score-based diffusion models have gained significant attention in the field of supervised speech enhancement, yielding state-of-the-art performance. However, these methods may face challenges when generalising to unseen conditions. To address this issue, we introduce an alternative approach that operates in an unsupervised manner, leveraging the generative power of diffusion models. Specifically, in a training phase, a clean speech prior distribution is learnt in the short-time Fourier transform (STFT) domain using score-based diffusion models, allowing it to unconditionally generate clean speech from Gaussian noise. Then, we develop a posterior sampling methodology for speech enhancement by combining the learnt clean speech prior with a noise model for speech signal inference. The noise parameters are simultaneously learnt along with clean speech estimation through an iterative expectationmaximisation (EM) approach. To the best of our knowledge, this is the first work exploring diffusion-based generative models for unsupervised speech enhancement, demonstrating promising results compared to a recent variational auto-encoder (VAE)-based unsupervised approach and a state-of-the-art diffusion-based supervised method. It thus opens a new direction for future research in unsupervised speech enhancement.

Ordinary differential equations (ODEs) are widely used to model complex dynamics that arises in biology, chemistry, engineering, finance, physics, etc. Calibration of a complicated ODE system using noisy data is generally very difficult. In this work, we propose a two-stage nonparametric approach to address this problem. We first extract the de-noised data and their higher order derivatives using boundary kernel method, and then feed them into a sparsely connected deep neural network with ReLU activation function. Our method is able to recover the ODE system without being subject to the curse of dimensionality and complicated ODE structure. When the ODE possesses a general modular structure, with each modular component involving only a few input variables, and the network architecture is properly chosen, our method is proven to be consistent. Theoretical properties are corroborated by an extensive simulation study that demonstrates the validity and effectiveness of the proposed method. Finally, we use our method to simultaneously characterize the growth rate of Covid-19 infection cases from 50 states of the USA.

Recent advancements in evaluating matrix-exponential functions have opened the doors to the practical use of exponential time-integration methods in numerical weather prediction (NWP). The success of exponential methods in shallow water simulations has led to the question of whether they can be beneficial in a 3D atmospheric model. In this paper, we take the first step forward by evaluating the behavior of exponential time-integration methods in the Navy's compressible deep-atmosphere nonhydrostatic global model (NEPTUNE-Navy Environmental Prediction sysTem Utilizing a Nonhydrostatic Engine). Simulations are conducted on a set of idealized test cases designed to assess key features of a nonhydrostatic model and demonstrate that exponential integrators capture the desired large and small-scale traits, yielding results comparable to those found in the literature. We propose a new upper boundary absorbing layer independent of reference state and shown to be effective in both idealized and real-data simulations. A real-data forecast using an exponential method with full physics is presented, providing a positive outlook for using exponential integrators for NWP.

Nonparametric varying coefficient (NVC) models are useful for modeling time-varying effects on responses that are measured repeatedly for the same subjects. When the number of covariates is moderate or large, it is desirable to perform variable selection from the varying coefficient functions. However, existing methods for variable selection in NVC models either fail to account for within-subject correlations or require the practitioner to specify a parametric form for the correlation structure. In this paper, we introduce the nonparametric varying coefficient spike-and-slab lasso (NVC-SSL) for Bayesian high-dimensional NVC models. Through the introduction of functional random effects, our method allows for flexible modeling of within-subject correlations without needing to specify a parametric covariance function. We further propose several scalable optimization and Markov chain Monte Carlo (MCMC) algorithms. For variable selection, we propose an Expectation Conditional Maximization (ECM) algorithm to rapidly obtain maximum a posteriori (MAP) estimates. Our ECM algorithm scales linearly in the total number of observations $N$ and the number of covariates $p$. For uncertainty quantification, we introduce an approximate MCMC algorithm that also scales linearly in both $N$ and $p$. We demonstrate the scalability, variable selection performance, and inferential capabilities of our method through simulations and a real data application. These algorithms are implemented in the publicly available R package NVCSSL on the Comprehensive R Archive Network.

We introduce new discrete best approximation problems, formulated and solved in the framework of tropical algebra, which deals with semirings and semifields with idempotent addition. Given a set of samples, each consisting of the input and output of an unknown function defined on an idempotent semifield, the problem is to find a best approximation of the function, by tropical Puiseux polynomial and rational functions. A new solution approach is proposed, which involves the reduction of the problem of polynomial approximation to the best approximate solution of a tropical linear vector equation with an unknown vector on one side (a one-sided equation). We derive a best approximate solution to the one-sided equation, and we evaluate the inherent approximation error in a direct analytical form. Furthermore, we reduce the rational approximation problem to the best approximate solution of an equation with unknown vectors on both sides (a two-sided equation). A best approximate solution to the two-sided equation is obtained in numerical form, by using an iterative alternating algorithm. To illustrate the new technique developed, we solve example approximation problems in terms of a real semifield, where addition is defined as maximum and multiplication as arithmetic addition (max-plus algebra), which corresponds to the best Chebyshev approximation by piecewise linear functions.

The possibility of dynamically modifying the computational load of neural models at inference time is crucial for on-device processing, where computational power is limited and time-varying. Established approaches for neural model compression exist, but they provide architecturally static models. In this paper, we investigate the use of early-exit architectures, that rely on intermediate exit branches, applied to large-vocabulary speech recognition. This allows for the development of dynamic models that adjust their computational cost to the available resources and recognition performance. Unlike previous works, besides using pre-trained backbones we also train the model from scratch with an early-exit architecture. Experiments on public datasets show that early-exit architectures from scratch not only preserve performance levels when using fewer encoder layers, but also improve task accuracy as compared to using single-exit models or using pre-trained models. Additionally, we investigate an exit selection strategy based on posterior probabilities as an alternative to frame-based entropy.

Leverage score sampling is crucial to the design of randomized algorithms for large-scale matrix problems, while the computation of leverage scores is a bottleneck of many applications. In this paper, we propose a quantum algorithm to accelerate this useful method. The speedup is at least quadratic and could be exponential for well-conditioned matrices. We also prove some quantum lower bounds, which suggest that our quantum algorithm is close to optimal. As an application, we propose a new quantum algorithm for rigid regression problems with vector solution outputs. It achieves polynomial speedups over the best classical algorithm known. In this process, we give an improved randomized algorithm for rigid regression.

Testing cross-sectional independence in panel data models is of fundamental importance in econometric analysis with high-dimensional panels. Recently, econometricians began to turn their attention to the problem in the presence of serial dependence. The existing procedure for testing cross-sectional independence with serial correlation is based on the sum of the sample cross-sectional correlations, which generally performs well when the alternative has dense cross-sectional correlations, but suffers from low power against sparse alternatives. To deal with sparse alternatives, we propose a test based on the maximum of the squared sample cross-sectional correlations. Furthermore, we propose a combined test to combine the p-values of the max based and sum based tests, which performs well under both dense and sparse alternatives. The combined test relies on the asymptotic independence of the max based and sum based test statistics, which we show rigorously. We show that the proposed max based and combined tests have attractive theoretical properties and demonstrate the superior performance via extensive simulation results. We apply the two new tests to analyze the weekly returns on the securities in the S\&P 500 index under the Fama-French three-factor model, and confirm the usefulness of the proposed combined test in detecting cross-sectional independence.

北京阿比特科技有限公司