亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Restricted star colouring is a variant of star colouring introduced to design heuristic algorithms to estimate sparse Hessian matrices. For $k\in\mathbb{N}$, a $k$-restricted star colouring ($k$-rs colouring) of a graph $G$ is a function $f:V(G)\to{0,1,\dots,k-1}$ such that (i)$f(x)\neq f(y)$ for every edge $xy$ of G, and (ii) there is no bicoloured 3-vertex path ($P_3$) in $G$ with the higher colour on its middle vertex. We show that for $k\geq 3$, it is NP-complete to test whether a given planar bipartite graph of maximum degree $k$ and arbitrarily large girth admits a $k$-rs colouring, and thereby answer a problem posed by Shalu and Sandhya (Graphs and Combinatorics, 2016). In addition, it is NP-complete to test whether a 3-star colourable graph admits a 3-rs colouring. We also prove that for all $\epsilon > 0$, the optimization problem of restricted star colouring a 2-degenerate bipartite graph with the minimum number of colours is NP-hard to approximate within $n^{(1/3)-\epsilon}$. On the positive side, we design (i) a linear-time algorithm to test 3-rs colourability of trees, and (ii) an $O(n^3)$-time algorithm to test 3-rs colourability of chordal graphs.

相關內容

Dynamic time warping distance (DTW) is a widely used distance measure between time series $x, y \in \Sigma^n$. It was shown by Abboud, Backurs, and Williams that in the \emph{binary case}, where $|\Sigma| = 2$, DTW can be computed in time $O(n^{1.87})$. We improve this running time $O(n)$. Moreover, if $x$ and $y$ are run-length encoded, then there is an algorithm running in time $\tilde{O}(k + \ell)$, where $k$ and $\ell$ are the number of runs in $x$ and $y$, respectively. This improves on the previous best bound of $O(k\ell)$ due to Dupont and Marteau.

We study the problem of matching a string in a labeled graph. Previous research has shown that unless the Orthogonal Vectors Hypothesis (OVH) is false, one cannot solve this problem in strongly sub-quadratic time, nor index the graph in polynomial time to answer queries efficiently (Equi et al. ICALP 2019, SOFSEM 2021). These conditional lower-bounds cover even deterministic graphs with binary alphabet, but there naturally exist also graph classes that are easy to index: E.g. Wheeler graphs (Gagie et al. Theor. Comp. Sci. 2017) cover graphs admitting a Burrows-Wheeler transform -based indexing scheme. However, it is NP-complete to recognize if a graph is a Wheeler graph (Gibney, Thankachan, ESA 2019). We propose an approach to alleviate the construction bottleneck of Wheeler graphs. Rather than starting from an arbitrary graph, we study graphs induced from multiple sequence alignments (MSAs). Elastic degenerate strings (Bernadini et al. SPIRE 2017, ICALP 2019) can be seen as such graphs, and we introduce here their generalization: elastic founder graphs. We first prove that even such induced graphs are hard to index under OVH. Then we introduce two subclasses, repeat-free and semi-repeat-free graphs, that are easy to index. We give a linear time algorithm to construct a repeat-free non-elastic founder graph from a gapless MSA, and (parameterized) near-linear time algorithms to construct semi-repeat-free (repeat-free, respectively) elastic founder graphs from general MSAs. Finally, we show that repeat-free elastic founder graphs admit a reduction to Wheeler graphs in polynomial time.

We introduce a model of register automata over infinite trees with extrema constraints. Such an automaton can store elements of a linearly ordered domain in its registers, and can compare those values to the suprema and infima of register values in subtrees. We show that the emptiness problem for these automata is decidable. As an application, we prove decidability of the countable satisfiability problem for two-variable logic in the presence of a tree order, a linear order, and arbitrary atoms that are MSO definable from the tree order. As a consequence, the satisfiability problem for two-variable logic with arbitrary predicates, two of them interpreted by linear orders, is decidable.

We present a probabilistic algorithm to test if a homogeneous polynomial ideal $I$ defining a scheme $X$ in $\mathbb{P}^n$ is radical using Segre classes and other geometric notions from intersection theory. Its worst case complexity depends on the geometry of $X$. If the scheme $X$ has reduced isolated primary components and no embedded components supported the singular locus of $X_{\rm red}=V(\sqrt{I})$, then the worst case complexity is doubly exponential in $n$; in all the other cases the complexity is singly exponential. The realm of the ideals for which our radical testing procedure requires only single exponential time includes examples which are often considered pathological, such as the ones drawn from the famous Mayr-Meyer set of ideals which exhibit doubly exponential complexity for the ideal membership problem.

A matching is a set of edges in a graph with no common endpoint. A matching $M$ is called acyclic if the induced subgraph on the endpoints of the edges in $M$ is acyclic. Given a graph $G$ and an integer $k$, Acyclic Matching Problem seeks for an acyclic matching of size $k$ in $G$. The problem is known to be NP-complete. In this paper, we investigate the complexity of the problem in different aspects. First, we prove that the problem remains NP-complete for the class of planar bipartite graphs of maximum degree three and arbitrarily large girth. Also, the problem remains NP-complete for the class of planar line graphs with maximum degree four. Moreover, we study the parameterized complexity of the problem. In particular, we prove that the problem is W[1]-hard on bipartite graphs with respect to the parameter $k$. On the other hand, the problem is fixed parameter tractable with respect to $k$, for line graphs, $C_4$-free graphs and every proper minor-closed class of graphs (including bounded tree-width and planar graphs).

The component size of a graph is the maximum number of edges in any connected component of the graph. Given a graph $G$ and two integers $k$ and $c$, $(k,c)$-Decomposition is the problem of deciding whether $G$ admits an edge partition into $k$ subgraphs with component size at most $c$. We prove that for any fixed $k \ge 2$ and $c \ge 2$, $(k,c)$-Decomposition is NP-complete in bipartite graphs. Also, when both $k$ and $c$ are part of the input, $(k,c)$-Decomposition is NP-complete even in trees. Moreover, $(k,c)$-Decomposition in trees is W[1]-hard with parameter $k$, and is FPT with parameter $c$. In addition, we present approximation algorithms for decomposing a tree either into the minimum number of subgraphs with component size at most $c$, or into $k$ subgraphs minimizing the maximum component size. En route to these results, we also obtain a fixed-parameter algorithm for Bin Packing with the bin capacity as parameter.

Given a point set $P$ in the plane, we seek a subset $Q\subseteq P$, whose convex hull gives a smaller and thus simpler representation of the convex hull of $P$. Specifically, let $cost(Q,P)$ denote the Hausdorff distance between the convex hulls $\mathcal{CH}(Q)$ and $\mathcal{CH}(P)$. Then given a value $\varepsilon>0$ we seek the smallest subset $Q\subseteq P$ such that $cost(Q,P)\leq \varepsilon$. We also consider the dual version, where given an integer $k$, we seek the subset $Q\subseteq P$ which minimizes $cost(Q,P)$, such that $|Q|\leq k$. For these problems, when $P$ is in convex position, we respectively give an $O(n\log^2 n)$ time algorithm and an $O(n\log^3 n)$ time algorithm, where the latter running time holds with high probability. When there is no restriction on $P$, we show the problem can be reduced to APSP in an unweighted directed graph, yielding an $O(n^{2.5302})$ time algorithm when minimizing $k$ and an $O(\min\{n^{2.5302}, kn^{2.376}\})$ time algorithm when minimizing $\varepsilon$, using prior results for APSP. Finally, we show our near linear algorithms for convex position give 2-approximations for the general case.

Multi-marginal optimal transport (MOT) is a generalization of optimal transport to multiple marginals. Optimal transport has evolved into an important tool in many machine learning applications, and its multi-marginal extension opens up for addressing new challenges in the field of machine learning. However, the usage of MOT has been largely impeded by its computational complexity which scales exponentially in the number of marginals. Fortunately, in many applications, such as barycenter or interpolation problems, the cost function adheres to structures, which has recently been exploited for developing efficient computational methods. In this work we derive computational bounds for these methods. With $m$ marginal distributions supported on $n$ points, we provide a $ \mathcal{\tilde O}(d(G)m n^2\epsilon^{-2})$ bound for a $\epsilon$-accuracy when the problem is associated with a tree with diameter $d(G)$. For the special case of the Wasserstein barycenter problem, which corresponds to a star-shaped tree, our bound is in alignment with the existing complexity bound for it.

We introduce a notion of "simulation" for labelled graphs, in which edges of the simulated graph are realized by regular expressions in the simulating graph, and prove that the tiling problem (aka "domino problem") for the simulating graph is at least as difficult as that for the simulated graph. We apply this to the Cayley graph of the "lamplighter group" $L=\mathbb Z/2\wr\mathbb Z$, and more generally to "Diestel-Leader graphs". We prove that these graphs simulate the plane, and thus deduce that the seeded tiling problem is unsolvable on the group $L$. We note that $L$ does not contain any plane in its Cayley graph, so our undecidability criterion by simulation covers cases not covered by Jeandel's criterion based on translation-like action of a product of finitely generated infinite groups. Our approach to tiling problems is strongly based on categorical constructions in graph theory.

We study the PAC learnability of multiwinner voting, focusing on the class of approval-based committee scoring (ABCS) rules. These are voting rules applied on profiles with approval ballots, where each voter approves some of the candidates. ABCS rules adapt positional scoring rules in single-winner voting by assuming that each committee of $k$ candidates collects from each voter a score, that depends on the size of the voter's ballot and on the size of its intersection with the committee. Then, committees of maximum score are the winning ones. Our goal is to learn a target rule (i.e., to learn the corresponding scoring function) using information about the winning committees of a small number of sampled profiles. Despite the existence of exponentially many outcomes compared to single-winner elections, we show that the sample complexity is still low: a polynomial number of samples carries enough information for learning the target committee with high confidence and accuracy. Unfortunately, even simple tasks that need to be solved for learning from these samples are intractable. We prove that deciding whether there exists some ABCS rule that makes a given committee winning in a given profile is a computationally hard problem. Our results extend to the class of sequential Thiele rules, which have received attention due to their simplicity.

北京阿比特科技有限公司