In this paper we initiate the study of cyclic algebraic geometry codes. We give conditions to construct cyclic algebraic geometry codes in the context of algebraic function fields over a finite field by using their group of automorphisms. We prove that cyclic algebraic geometry codes constructed in this way are closely related to cyclic extensions. We also give a detailed study of the monomial equivalence of cyclic algebraic geometry codes constructed with our method in the case of a rational function field.
In this paper, we introduce multivariate Goppa codes, which contain as a special case the well-known, classical Goppa codes. We provide a parity check matrix for a multivariate Goppa code in terms of a tensor product of generalized Reed-Solomon codes. We prove that multivariate Goppa codes are subfield subcodes of augmented Cartesian codes. By showing how this new family of codes relates to tensor products of generalized Reed-Solomon codes and augmented codes, we obtain information about the parameters, subcodes, duals, and hulls of multivariate Goppa codes. We see that in certain cases, the hulls of multivariate Goppa codes (resp., tensor product of generalized Reed-Solomon codes), are also multivariate Goppa codes (resp. tensor product of generalized Reed-Solomon codes). We utilize the multivariate Goppa codes to obtain entanglement-assisted quantum error-correcting codes and to build families of long LCD, self-dual, or self-orthogonal codes.
There has been a lot of effort to construct good quantum codes from the classical error correcting codes. Constructing new quantum codes, using Hermitian self-orthogonal codes, seems to be a difficult problem in general. In this paper, Hermitian self-orthogonal codes are studied from algebraic function fields. Sufficient conditions for the Hermitian self-orthogonality of an algebraic geometry code are presented. New Hermitian self-orthogonal codes are constructed from projective lines, elliptic curves, hyper-elliptic curves, Hermitian curves, and Artin-Schreier curves. In addition, over the projective lines, we construct new families of MDS quantum codes with parameters $[[N,N-2K,K+1]]_q$ under the following conditions: i) $N=t(q-1)+1$ or $t(q-1)+2$ with $t|(q+1)$ and $K=\lfloor\frac{t(q-1)+1}{2t}\rfloor+1$; ii) $(n-1)|(q^2-1)$, $N=n$ or $N=n+1$, $K_0=\lfloor\frac{n+q-1}{q+1}\rfloor$, and $K\ge K_0+1$; iii) $N=tq+1$, $\forall~1\le t\le q$ and $K=\lfloor\frac{tq+q-1}{q+1}\rfloor+1$; iv) $n|(q^2-1)$, $n_2=\frac{n}{\gcd (n,q+1)}$, $\forall~ 1\le t\le \frac{q-1}{n_2}-1$, $N=(t+1)n+2$ and $K=\lfloor \frac{(t+1)n+1+q-1}{q+1}\rfloor+1$.
In 2006, Arnold, Falk, and Winther developed finite element exterior calculus, using the language of differential forms to generalize the Lagrange, Raviart-Thomas, Brezzi-Douglas-Marini, and N\'ed\'elec finite element spaces for simplicial triangulations. In a recent paper, Licht asks whether, on a single simplex, one can construct bases for these spaces that are invariant with respect to permuting the vertices of the simplex. For scalar fields, standard bases all have this symmetry property, but for vector fields, this question is more complicated: such invariant bases may or may not exist, depending on the polynomial degree of the element. In dimensions two and three, Licht constructs such invariant bases for certain values of the polynomial degree $r$, and he conjectures that his list is complete, that is, that no such basis exists for other values of $r$. In this paper, we show that Licht's conjecture is true in dimension two. However, in dimension three, we show that Licht's ideas can be extended to give invariant bases for many more values of $r$; we then show that this new larger list is complete. Along the way, we develop a more general framework for the geometric decomposition ideas of Arnold, Falk, and Winther.
In this paper, we identify many important properties and develop criteria for the existence of subquasigroups in finite quasigroups. Based on these results, we propose an effective method that concludes the nonexistence of subquasigroup of a finite quasigroup, otherwise finds its all possible proper subquasigroups. This has an important application in checking the cryptographic suitability of a finite quasigroup. \par Further, we propose a binary operation using arithmetic of finite fields to construct quasigroups of order $p^r$. We develop the criteria under which these quasigroups have desirable cryptographic properties, viz. polynomially completeness and possessing no proper subquasigroups. Then a practical method is given to construct cryptographically suitable quasigroups. We also illustrate these methods by some academic examples and implement all proposed algorithms in the computer algebra system {\sc{Singular}}.
A code is called $(n, k, r, t)$ information symbol locally repairable code (IS-LRC) if each information coordinate can be achieved by at least $t$ disjoint repair sets containing at most $r$ other coordinates. This letter considers a class of $(n, k, r, t)$ IS-LRCs, where each repair set contains exactly one parity coordinate. We explore the systematic code in terms of the standard parity check matrix. First, we propose some structural features of the parity check matrix by showing a connection with the membership matrix. After that, we place parity check matrix based proof of several bounds associated with the code. In addition, we provide two constructions of optimal parameters of $(n,k,r,t)$ IS-LRCs with the help of two Cayley tables of a finite field. Finally, we present a generalized result on optimal $q$-ary $(n,k,r,t)$ IS-LRCs related to MDS codes.
We provide a geometric characterization of $k$-dimensional $\mathbb{F}_{q^m}$-linear sum-rank metric codes as tuples of $\mathbb{F}_q$-subspaces of $\mathbb{F}_{q^m}^k$. We then use this characterization to study one-weight codes in the sum-rank metric. This leads us to extend the family of linearized Reed-Solomon codes in order to obtain a doubly-extended version of them. We prove that these codes are still maximum sum-rank distance (MSRD) codes and, when $k=2$, they are one-weight, as in the Hamming-metric case. We then focus on constant rank-profile codes in the sum-rank metric, which are a special family of one weight-codes, and derive constraints on their parameters with the aid of an associated Hamming-metric code. Furthermore, we introduce the $n$-simplex codes in the sum-rank metric, which are obtained as the orbit of a Singer subgroup of $\mathrm{GL}(k,q^m)$. They turn out to be constant rank-profile - and hence one-weight - and generalize the simplex codes in both the Hamming and the rank metric. Finally, we focus on $2$-dimensional one-weight codes, deriving constraints on the parameters of those which are also MSRD, and we find a new construction of one-weight MSRD codes when $q=2$.
We investigate the complexity of computing the Zariski closure of a finitely generated group of matrices. The Zariski closure was previously shown to be computable by Derksen, Jeandel, and Koiran, but the termination argument for their algorithm appears not to yield any complexity bound. In this paper we follow a different approach and obtain a bound on the degree of the polynomials that define the closure. Our bound shows that the closure can be computed in elementary time. We also obtain upper bounds on the length of chains of linear algebraic groups, where all the groups are generated over a fixed number field.
A phase-type distribution is the distribution of the time until absorption in a finite state-space time-homogeneous Markov jump process, with one absorbing state and the rest being transient. These distributions are mathematically tractable and conceptually attractive to model physical phenomena due to their interpretation in terms of a hidden Markov structure. Three recent extensions of regular phase-type distributions give rise to models which allow for heavy tails: discrete- or continuous-scaling; fractional-time semi-Markov extensions; and inhomogeneous time-change of the underlying Markov process. In this paper, we present a unifying theory for heavy-tailed phase-type distributions for which all three approaches are particular cases. Our main objective is to provide useful models for heavy-tailed phase-type distributions, but any other tail behavior is also captured by our specification. We provide relevant new examples and also show how existing approaches are naturally embedded. Subsequently, two multivariate extensions are presented, inspired by the univariate construction which can be considered as a matrix version of a frailty model. We provide fully explicit EM-algorithms for all models and illustrate them using synthetic and real-life data.
We derive an upper bound on the reliability function of mismatched decoding for zero-rate codes. The bound is based on a result by Koml\'os that shows the existence of a subcode with certain symmetry properties. The bound is shown to coincide with the expurgated exponent at rate zero for a broad family of channel-decoding metric pairs.
This study is inspired by those of Huang et al. (Soft Comput. 25, 2513--2520, 2021) and Wang et al. (Inf. Sci. 179, 3026--3040, 2009) in which some ranking techniques for interval-valued intuitionistic fuzzy numbers (IVIFNs) were introduced. In this study, we prove that the space of all IVIFNs with the relation in the method for comparing any two IVIFNs based on a score function and three types of entropy functions is a complete chain and obtain that this relation is an admissible order. Moreover, we demonstrate that IVIFNs are complete chains to the relation in the comparison method for IVIFNs on the basis of score, accuracy, membership uncertainty index, and hesitation uncertainty index functions.