亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers the performance of Reed-Muller (RM) codes transmitted over binary memoryless symmetric (BMS) channels under bitwise maximum-a-posteriori (bit-MAP) decoding. Its main result is that, for a fixed BMS channel, the family of binary RM codes can achieve a vanishing bit-error probability at rates approaching the channel capacity. This partially resolves a long-standing open problem that connects information theory and error-correcting codes. In contrast with the earlier result for the binary erasure channel, the new proof does not rely on hypercontractivity. Instead, it combines a nesting property of RM codes with new information inequalities relating the generalized extrinsic information transfer function and the extrinsic minimum mean-squared error.

相關內容

This paper investigates the multiple-input-multiple-output (MIMO) massive unsourced random access in an asynchronous orthogonal frequency division multiplexing (OFDM) system, with both timing and frequency offsets (TFO) and non-negligible user collisions. The proposed coding framework splits the data into two parts encoded by sparse regression code (SPARC) and low-density parity check (LDPC) code. Multistage orthogonal pilots are transmitted in the first part to reduce collision density. Unlike existing schemes requiring a quantization codebook with a large size for estimating TFO, we establish a \textit{graph-based channel reconstruction and collision resolution (GB-CR$^2$)} algorithm to iteratively reconstruct channels, resolve collisions, and compensate for TFO rotations on the formulated graph jointly among multiple stages. We further propose to leverage the geometric characteristics of signal constellations to correct TFO estimations. Exhaustive simulations demonstrate remarkable performance superiority in channel estimation and data recovery with substantial complexity reduction compared to state-of-the-art schemes.

The paper suggests a generalization of the Sign-Perturbed Sums (SPS) finite sample system identification method for the identification of closed-loop observable stochastic linear systems in state-space form. The solution builds on the theory of matrix-variate regression and instrumental variable methods to construct distribution-free confidence regions for the state-space matrices. Both direct and indirect identification are studied, and the exactness as well as the strong consistency of the construction are proved. Furthermore, a new, computationally efficient ellipsoidal outer-approximation algorithm for the confidence regions is proposed. The new construction results in a semidefinite optimization problem which has an order-of-magnitude smaller number of constraints, as if one applied the ellipsoidal outer-approximation after vectorization. The effectiveness of the approach is also demonstrated empirically via a series of numerical experiments.

We propose a novel image dataset focused on tiny faces wearing face masks for mask classification purposes, dubbed Small Face MASK (SF-MASK), composed of a collection made from 20k low-resolution images exported from diverse and heterogeneous datasets, ranging from 7 x 7 to 64 x 64 pixel resolution. An accurate visualization of this collection, through counting grids, made it possible to highlight gaps in the variety of poses assumed by the heads of the pedestrians. In particular, faces filmed by very high cameras, in which the facial features appear strongly skewed, are absent. To address this structural deficiency, we produced a set of synthetic images which resulted in a satisfactory covering of the intra-class variance. Furthermore, a small subsample of 1701 images contains badly worn face masks, opening to multi-class classification challenges. Experiments on SF-MASK focus on face mask classification using several classifiers. Results show that the richness of SF-MASK (real + synthetic images) leads all of the tested classifiers to perform better than exploiting comparative face mask datasets, on a fixed 1077 images testing set. Dataset and evaluation code are publicly available here: //github.com/HumaticsLAB/sf-mask

Feature selection could be defined as an optimization problem and solved by bio-inspired algorithms. Bees Algorithm (BA) shows decent performance in feature selection optimization tasks. On the other hand, Local Phase Quantization (LPQ) is a frequency domain feature which has excellent performance on Depth images. Here, after extracting LPQ features out of RGB (colour) and Depth images from the Iranian Kinect Face Database (IKFDB), the Bees feature selection algorithm applies to select the desired number of features for final classification tasks. IKFDB is recorded with Kinect sensor V.2 and contains colour and depth images for facial and facial micro-expressions recognition purposes. Here five facial expressions of Anger, Joy, Surprise, Disgust and Fear are used for final validation. The proposed Bees LPQ method is compared with Particle Swarm Optimization (PSO) LPQ, PCA LPQ, Lasso LPQ, and just LPQ features for classification tasks with Support Vector Machines (SVM), K-Nearest Neighbourhood (KNN), Shallow Neural Network and Ensemble Subspace KNN. Returned results, show a decent performance of the proposed algorithm (99 % accuracy) in comparison with others.

This paper introduces two novel approaches for Online Multi-Task Learning (MTL) Regression Problems. We employ a high performance graph-based MTL formulation and develop its recursive versions based on the Weighted Recursive Least Squares (WRLS) and the Online Sparse Least Squares Support Vector Regression (OSLSSVR). Adopting task-stacking transformations, we demonstrate the existence of a single matrix incorporating the relationship of multiple tasks and providing structural information to be embodied by the MT-WRLS method in its initialization procedure and by the MT-OSLSSVR in its multi-task kernel function. Contrasting the existing literature, which is mostly based on Online Gradient Descent (OGD) or cubic inexact approaches, we achieve exact and approximate recursions with quadratic per-instance cost on the dimension of the input space (MT-WRLS) or on the size of the dictionary of instances (MT-OSLSSVR). We compare our online MTL methods to other contenders in a real-world wind speed forecasting case study, evidencing the significant gain in performance of both proposed approaches.

This paper presents a mini immersed finite element (IFE) method for solving two- and three-dimensional two-phase Stokes problems on Cartesian meshes. The IFE space is constructed from the conventional mini element with shape functions modified on interface elements according to interface jump conditions, while keeping the degrees of freedom unchanged. Both discontinuous viscosity coefficients and surface forces are considered in the construction. The interface is approximated via discrete level set functions and explicit formulas of IFE basis functions and correction functions are derived, which make the IFE method easy to implement. The optimal approximation capabilities of the IFE space and the inf-sup stability and the optimal a priori error estimate of the IFE method are derived rigorously with constants independent of the mesh size and how the interface cuts the mesh. It is also proved that the condition number has the usual bound independent of the interface. Numerical experiments are provided to confirm the theoretical results.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司