亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The topological (resp. geodesic) complexity of a topological (resp. metric) space is roughly the smallest number of continuous rules required to choose paths (resp. shortest paths) between any points of the space. We prove that the geodesic complexity of a cube exceeds its topological complexity by exactly 2. The proof involves a careful analysis of cut loci of the cube.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Given a hypergraph $\mathcal{H}$, the dual hypergraph of $\mathcal{H}$ is the hypergraph of all minimal transversals of $\mathcal{H}$. The dual hypergraph is always Sperner, that is, no hyperedge contains another. A special case of Sperner hypergraphs are the conformal Sperner hypergraphs, which correspond to the families of maximal cliques of graphs. All these notions play an important role in many fields of mathematics and computer science, including combinatorics, algebra, database theory, etc. In this paper we study conformality of dual hypergraphs. While we do not settle the computational complexity status of recognizing this property, we show that the problem is in co-NP and can be solved in polynomial time for hypergraphs of bounded dimension. In the special case of dimension $3$, we reduce the problem to $2$-Satisfiability. Our approach has an implication in algorithmic graph theory: we obtain a polynomial-time algorithm for recognizing graphs in which all minimal transversals of maximal cliques have size at most $k$, for any fixed $k$.

Functional graphs (FGs) model the graph structures used to analyze the behavior of functions from a discrete set to itself. In turn, such functions are used to study real complex phenomena evolving in time. As the systems involved can be quite large, it is interesting to decompose and factorize them into several subgraphs acting together. Polynomial equations over functional graphs provide a formal way to represent this decomposition and factorization mechanism, and solving them validates or invalidates hypotheses on their decomposability. The current solution method breaks down a single equation into a series of \emph{basic} equations of the form $A\times X=B$ (with $A$, $X$, and $B$ being FGs) to identify the possible solutions. However, it is able to consider just FGs made of cycles only. This work proposes an algorithm for solving these basic equations for general connected FGs. By exploiting a connection with the cancellation problem, we prove that the upper bound to the number of solutions is closely related to the size of the cycle in the coefficient $A$ of the equation. The cancellation problem is also involved in the main algorithms provided by the paper. We introduce a polynomial-time semi-decision algorithm able to provide constraints that a potential solution will have to satisfy if it exists. Then, exploiting the ideas introduced in the first algorithm, we introduce a second exponential-time algorithm capable of finding all solutions by integrating several `hacks' that try to keep the exponential as tight as possible.

The nonlinear Poisson-Boltzmann equation (NPBE) is an elliptic partial differential equation used in applications such as protein interactions and biophysical chemistry (among many others). It describes the nonlinear electrostatic potential of charged bodies submerged in an ionic solution. The kinetic presence of the solvent molecules introduces randomness to the shape of a protein, and thus a more accurate model that incorporates these random perturbations of the domain is analyzed to compute the statistics of quantities of interest of the solution. When the parameterization of the random perturbations is high-dimensional, this calculation is intractable as it is subject to the curse of dimensionality. However, if the solution of the NPBE varies analytically with respect to the random parameters, the problem becomes amenable to techniques such as sparse grids and deep neural networks. In this paper, we show analyticity of the solution of the NPBE with respect to analytic perturbations of the domain by using the analytic implicit function theorem and the domain mapping method. Previous works have shown analyticity of solutions to linear elliptic equations but not for nonlinear problems. We further show how to derive \emph{a priori} bounds on the size of the region of analyticity. This method is applied to the trypsin molecule to demonstrate that the convergence rates of the quantity of interest are consistent with the analyticity result. Furthermore, the approach developed here is sufficiently general enough to be applied to other nonlinear problems in uncertainty quantification.

The complexity class Quantum Statistical Zero-Knowledge ($\mathsf{QSZK}$) captures computational difficulties of the time-bounded quantum state testing problem with respect to the trace distance, known as the Quantum State Distinguishability Problem (QSDP) introduced by Watrous (FOCS 2002). However, QSDP is in $\mathsf{QSZK}$ merely within the constant polarizing regime, similar to its classical counterpart shown by Sahai and Vadhan (JACM 2003) due to the polarization lemma (error reduction for SDP). Recently, Berman, Degwekar, Rothblum, and Vasudevan (TCC 2019) extended the $\mathsf{SZK}$ containment for SDP beyond the polarizing regime via the time-bounded distribution testing problems with respect to the triangular discrimination and the Jensen-Shannon divergence. Our work introduces proper quantum analogs for these problems by defining quantum counterparts for triangular discrimination. We investigate whether the quantum analogs behave similarly to their classical counterparts and examine the limitations of existing approaches to polarization regarding quantum distances. These new $\mathsf{QSZK}$-complete problems improve $\mathsf{QSZK}$ containments for QSDP beyond the polarizing regime and establish a simple $\mathsf{QSZK}$-hardness for the quantum entropy difference problem (QEDP) defined by Ben-Aroya, Schwartz, and Ta-Shma (ToC 2010). Furthermore, we prove that QSDP with some exponentially small errors is in $\mathsf{PP}$, while the same problem without error is in $\mathsf{NQP}$.

We consider a kinetic model of an N-species gas mixture modeled with quantum Bhatnagar-Gross-Krook (BGK) collision operators. The collision operators consist of a relaxation to a Maxwell distribution in the classical case, a Fermi distribution for fermions and a Bose-Einstein distribution for bosons. In this paper we present a numerical method for simulating this model, which uses an Implicit-Explicit (IMEX) scheme to minimize a certain potential function. This is motivated by theoretical considerations coming from entropy minimization. We show that theoretical properties such as conservation of mass, total momentum and total energy as well as positivity of the distribution functions are preserved by the numerical method presented in this paper, and illustrate its usefulness and effectiveness with numerical examples

It often happens that free algebras for a given theory satisfy useful reasoning principles that are not preserved under homomorphisms of algebras, and hence need not hold in an arbitrary algebra. For instance, if $M$ is the free monoid on a set $A$, then the scalar multiplication function $A\times M \to M$ is injective. Therefore, when reasoning in the formal theory of monoids under $A$, it is possible to use this injectivity law to make sound deductions even about monoids under $A$ for which scalar multiplication is not injective -- a principle known in algebra as the permanence of identity. Properties of this kind are of fundamental practical importance to the logicians and computer scientists who design and implement computerized proof assistants like Lean and Coq, as they enable the formal reductions of equational problems that make type checking tractable. As type theories have become increasingly more sophisticated, it has become more and more difficult to establish the useful properties of their free models that enable effective implementation. These obstructions have facilitated a fruitful return to foundational work in type theory, which has taken on a more geometrical flavor than ever before. Here we expose a modern way to prove a highly non-trivial injectivity law for free models of Martin-L\"of type theory, paying special attention to the ways that contemporary methods in type theory have been influenced by three important ideas of the Grothendieck school: the relative point of view, the language of universes, and the recollement of generalized spaces.

We study the multivariate deconvolution problem of recovering the distribution of a signal from independent and identically distributed observations additively contaminated with random errors (noise) from a known distribution. For errors with independent coordinates having ordinary smooth densities, we derive an inversion inequality relating the $L^1$-Wasserstein distance between two distributions of the signal to the $L^1$-distance between the corresponding mixture densities of the observations. This smoothing inequality outperforms existing inversion inequalities. As an application of the inversion inequality to the Bayesian framework, we consider $1$-Wasserstein deconvolution with Laplace noise in dimension one using a Dirichlet process mixture of normal densities as a prior measure on the mixing distribution (or distribution of the signal). We construct an adaptive approximation of the sampling density by convolving the Laplace density with a well-chosen mixture of normal densities and show that the posterior measure concentrates around the sampling density at a nearly minimax rate, up to a log-factor, in the $L^1$-distance. The same posterior law is also shown to automatically adapt to the unknown Sobolev regularity of the mixing density, thus leading to a new Bayesian adaptive estimation procedure for mixing distributions with regular densities under the $L^1$-Wasserstein metric. We illustrate utility of the inversion inequality also in a frequentist setting by showing that an appropriate isotone approximation of the classical kernel deconvolution estimator attains the minimax rate of convergence for $1$-Wasserstein deconvolution in any dimension $d\geq 1$, when only a tail condition is required on the latent mixing density and we derive sharp lower bounds for these problems

In the area of query complexity of Boolean functions, the most widely studied cost measure of an algorithm is the worst-case number of queries made by it on an input. Motivated by the most natural cost measure studied in online algorithms, the competitive ratio, we consider a different cost measure for query algorithms for Boolean functions that captures the ratio of the cost of the algorithm and the cost of an optimal algorithm that knows the input in advance. The cost of an algorithm is its largest cost over all inputs. Grossman, Komargodski and Naor [ITCS'20] introduced this measure for Boolean functions, and dubbed it instance complexity. Grossman et al. showed, among other results, that monotone Boolean functions with instance complexity 1 are precisely those that depend on one or two variables. We complement the above-mentioned result of Grossman et al. by completely characterizing the instance complexity of symmetric Boolean functions. As a corollary we conclude that the only symmetric Boolean functions with instance complexity 1 are the Parity function and its complement. We also study the instance complexity of some graph properties like Connectivity and k-clique containment. In all the Boolean functions we study above, and those studied by Grossman et al., the instance complexity turns out to be the ratio of query complexity to minimum certificate complexity. It is a natural question to ask if this is the correct bound for all Boolean functions. We show a negative answer in a very strong sense, by analyzing the instance complexity of the Greater-Than and Odd-Max-Bit functions. We show that the above-mentioned ratio is linear in the input size for both of these functions, while we exhibit algorithms for which the instance complexity is a constant.

We consider the problem of recovering a latent graph where the observations at each node are \emph{aliased}, and transitions are stochastic. Observations are gathered by an agent traversing the graph. Aliasing means that multiple nodes emit the same observation, so the agent can not know in which node it is located. The agent needs to uncover the hidden topology as accurately as possible and in as few steps as possible. This is equivalent to efficient recovery of the transition probabilities of a partially observable Markov decision process (POMDP) in which the observation probabilities are known. An algorithm for efficiently exploring (and ultimately recovering) the latent graph is provided. Our approach is exponentially faster than naive exploration in a variety of challenging topologies with aliased observations while remaining competitive with existing baselines in the unaliased regime.

We study the query complexity of slices of Boolean functions. Among other results we show that there exists a Boolean function for which we need to query all but 7 input bits to compute its value, even if we know beforehand that the number of 0's and 1's in the input are the same, i.e. when our input is from the middle slice. This answers a question of Byramji. Our proof is non-constructive, but we also propose a concrete candidate function that might have the above property. Our results are related to certain natural discrepancy type questions that -- somewhat surprisingly -- have not been studied before.

北京阿比特科技有限公司