亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum network communication is challenging, as the No-cloning theorem in quantum regime makes many classical techniques inapplicable. For long-distance communication, the only viable communication approach is teleportation of quantum states, which requires a prior distribution of entangled pairs (EPs) of qubits. Establishment of EPs across remote nodes can incur significant latency due to the low probability of success of the underlying physical processes. The focus of our work is to develop efficient techniques that minimize EP generation latency. Prior works have focused on selecting entanglement paths; in contrast, we select entanglement swapping trees--a more accurate representation of the entanglement generation structure. We develop a dynamic programming algorithm to select an optimal swapping-tree for a single pair of nodes, under the given capacity and fidelity constraints. For the general setting, we develop an efficient iterative algorithm to compute a set of swapping trees. We present simulation results which show that our solutions outperform the prior approaches by an order of magnitude and are viable for long-distance entanglement generation.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網絡會議(yi)。 Publisher:IFIP。 SIT:

Spiking neural networks (SNNs) are investigated as biologically inspired models of neural computation, distinguished by their computational capability and energy efficiency due to precise spiking times and sparse spikes with event-driven computation. A significant question is how SNNs can emulate human-like graph-based reasoning of concepts and relations, especially leveraging the temporal domain optimally. This paper reveals that SNNs, when amalgamated with synaptic delay and temporal coding, are proficient in executing (knowledge) graph reasoning. It is elucidated that spiking time can function as an additional dimension to encode relation properties via a neural-generalized path formulation. Empirical results highlight the efficacy of temporal delay in relation processing and showcase exemplary performance in diverse graph reasoning tasks. The spiking model is theoretically estimated to achieve $20\times$ energy savings compared to non-spiking counterparts, deepening insights into the capabilities and potential of biologically inspired SNNs for efficient reasoning. The code is available at //github.com/pkuxmq/GRSNN.

Electromagnetic information theory (EIT) is one of the emerging topics for 6G communication due to its potential to reveal the performance limit of wireless communication systems. For EIT, the research foundation is reasonable and accurate channel modeling. Existing channel modeling works for EIT in non-line-of-sight (NLoS) scenario focus on far-field modeling, which can not accurately capture the characteristics of the channel in near-field. In this paper, we propose the near-field channel model for EIT based on electromagnetic scattering theory. We model the channel by using non-stationary Gaussian random fields and derive the analytical expression of the correlation function of the fields. Furthermore, we analyze the characteristics of the proposed channel model, e.g., channel degrees of freedom (DoF). Finally, we design a channel estimation scheme for near-field scenario by integrating the electromagnetic prior information of the proposed model. Numerical analysis verifies the correctness of the proposed scheme and shows that it can outperform existing schemes like least square (LS) and orthogonal matching pursuit (OMP).

There is always demand for integrating data into microeconomic decision making. Participatory sensing deals with how real-world data may be extracted with stakeholder participation and resolves a problem of Big Data, which is concerned with monetizing data extracted from individuals without their participation. We present how Decentralized Physical Infrastructure Networks (DePINs) extend participatory sensing. We discuss the threat models of these networks and how DePIN cryptoeconomics can advance participatory sensing.

Goal-oriented communication has become one of the focal concepts in sixth-generation communication systems owing to its potential to provide intelligent, immersive, and real-time mobile services. The emerging paradigms of goal-oriented communication constitute closed loops integrating communication, computation, and sensing. However, challenges arise for closed-loop timing analysis due to multiple random factors that affect the communication/computation latency, as well as the heterogeneity of feedback mechanisms across multi-modal sensing data. To tackle these problems, we aim to provide a unified timing analysis framework for closed-loop goal-oriented communication (CGC) systems over fading channels. The proposed framework is unified as it considers computation, compression, and communication latency in the loop with different configurations. To capture the heterogeneity across multi-modal feedback, we categorize the sensory data into the periodic-feedback and event-triggered, respectively. We formulate timing constraints based on average and tail performance, covering timeliness, jitter, and reliability of CGC systems. A method based on saddlepoint approximation is proposed to obtain the distribution of closed-loop latency. The results show that the modified saddlepoint approximation is capable of accurately characterizing the latency distribution of the loop with analytically tractable expressions. This sets the basis for low-complexity co-design of communication and computation.

Out-of-distribution detection (OOD) is a crucial technique for deploying machine learning models in the real world to handle the unseen scenarios. In this paper, we first propose a simple yet effective Neural Activation Prior (NAP) for OOD detection. Our neural activation prior is based on a key observation that, for a channel before the global pooling layer of a fully trained neural network, the probability of a few neurons being activated with a large response by an in-distribution (ID) sample is significantly higher than that by an OOD sample. An intuitive explanation is that for a model fully trained on ID dataset, each channel would play a role in detecting a certain pattern in the ID dataset, and a few neurons can be activated with a large response when the pattern is detected in an input sample. Then, a new scoring function based on this prior is proposed to highlight the role of these strongly activated neurons in OOD detection. Our approach is plug-and-play and does not lead to any performance degradation on ID data classification and requires no extra training or statistics from training or external datasets. Notice that previous methods primarily rely on post-global-pooling features of the neural networks, while the within-channel distribution information we leverage would be discarded by the global pooling operator. Consequently, our method is orthogonal to existing approaches and can be effectively combined with them in various applications. Experimental results show that our method achieves the state-of-the-art performance on CIFAR benchmark and ImageNet dataset, which demonstrates the power of the proposed prior. Finally, we extend our method to Transformers and the experimental findings indicate that NAP can also significantly enhance the performance of OOD detection on Transformers, thereby demonstrating the broad applicability of this prior knowledge.

Recommender systems (RSs) have become an essential tool for mitigating information overload in a range of real-world applications. Recent trends in RSs have revealed a major paradigm shift, moving the spotlight from model-centric innovations to data-centric efforts (e.g., improving data quality and quantity). This evolution has given rise to the concept of data-centric recommender systems (Data-Centric RSs), marking a significant development in the field. This survey provides the first systematic overview of Data-Centric RSs, covering 1) the foundational concepts of recommendation data and Data-Centric RSs; 2) three primary issues of recommendation data; 3) recent research developed to address these issues; and 4) several potential future directions of Data-Centric RSs.

Grounding the reasoning ability of large language models (LLMs) for embodied tasks is challenging due to the complexity of the physical world. Especially, LLM planning for multi-agent collaboration requires communication of agents or credit assignment as the feedback to re-adjust the proposed plans and achieve effective coordination. However, existing methods that overly rely on physical verification or self-reflection suffer from excessive and inefficient querying of LLMs. In this paper, we propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans. Specifically, we perform critic regression to learn a sequential advantage function from LLM-planned data, and then treat the LLM planner as an optimizer to generate actions that maximize the advantage function. It endows the LLM with the foresight to discern whether the action contributes to accomplishing the final task. We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems. Experiments on Overcooked-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents and query rounds of LLMs, demonstrating its high efficiency for grounding LLMs. More results are given at \url{//read-llm.github.io/}.

We present a novel algorithm that efficiently computes near-optimal deterministic policies for constrained reinforcement learning (CRL) problems. Our approach combines three key ideas: (1) value-demand augmentation, (2) action-space approximate dynamic programming, and (3) time-space rounding. Under mild reward assumptions, our algorithm constitutes a fully polynomial-time approximation scheme (FPTAS) for a diverse class of cost criteria. This class requires that the cost of a policy can be computed recursively over both time and (state) space, which includes classical expectation, almost sure, and anytime constraints. Our work not only provides provably efficient algorithms to address real-world challenges in decision-making but also offers a unifying theory for the efficient computation of constrained deterministic policies.

Neural network-based approaches have recently shown significant promise in solving partial differential equations (PDEs) in science and engineering, especially in scenarios featuring complex domains or the incorporation of empirical data. One advantage of the neural network method for PDEs lies in its automatic differentiation (AD), which necessitates only the sample points themselves, unlike traditional finite difference (FD) approximations that require nearby local points to compute derivatives. In this paper, we quantitatively demonstrate the advantage of AD in training neural networks. The concept of truncated entropy is introduced to characterize the training property. Specifically, through comprehensive experimental and theoretical analyses conducted on random feature models and two-layer neural networks, we discover that the defined truncated entropy serves as a reliable metric for quantifying the residual loss of random feature models and the training speed of neural networks for both AD and FD methods. Our experimental and theoretical analyses demonstrate that, from a training perspective, AD outperforms FD in solving partial differential equations.

Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.

北京阿比特科技有限公司