亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The policy gradient theorem states that the policy should only be updated in states that are visited by the current policy, which leads to insufficient planning in the off-policy states, and thus to convergence to suboptimal policies. We tackle this planning issue by extending the policy gradient theory to policy updates with respect to any state density. Under these generalized policy updates, we show convergence to optimality under a necessary and sufficient condition on the updates' state densities, and thereby solve the aforementioned planning issue. We also prove asymptotic convergence rates that significantly improve those in the policy gradient literature. To implement the principles prescribed by our theory, we propose an agent, Dr Jekyll & Mr Hyde (JH), with a double personality: Dr Jekyll purely exploits while Mr Hyde purely explores. JH's independent policies allow to record two separate replay buffers: one on-policy (Dr Jekyll's) and one off-policy (Mr Hyde's), and therefore to update JH's models with a mixture of on-policy and off-policy updates. More than an algorithm, JH defines principles for actor-critic algorithms to satisfy the requirements we identify in our analysis. We extensively test on finite MDPs where JH demonstrates a superior ability to recover from converging to a suboptimal policy without impairing its speed of convergence. We also implement a deep version of the algorithm and test it on a simple problem where it shows promising results.

相關內容

磁流變(bian)(Magnetorheological,簡稱MR)材料是(shi)一(yi)種流變(bian)性能可由(you)磁場(chang)控(kong)制(zhi)的新型智能材料。由(you)于其響應快(ms量級)、可逆性好(撤(che)去磁場(chang)后,又(you)恢復初始狀態)、以及通過調節(jie)磁場(chang)大小來控(kong)制(zhi)材料的力(li)學性能連續變(bian)化,因(yin)而近年來在汽車、建(jian)筑、振動控(kong)制(zhi)等領域得到(dao)廣泛應用。

The cooperative bandit problem is increasingly becoming relevant due to its applications in large-scale decision-making. However, most research for this problem focuses exclusively on the setting with perfect communication, whereas in most real-world distributed settings, communication is often over stochastic networks, with arbitrary corruptions and delays. In this paper, we study cooperative bandit learning under three typical real-world communication scenarios, namely, (a) message-passing over stochastic time-varying networks, (b) instantaneous reward-sharing over a network with random delays, and (c) message-passing with adversarially corrupted rewards, including byzantine communication. For each of these environments, we propose decentralized algorithms that achieve competitive performance, along with near-optimal guarantees on the incurred group regret as well. Furthermore, in the setting with perfect communication, we present an improved delayed-update algorithm that outperforms the existing state-of-the-art on various network topologies. Finally, we present tight network-dependent minimax lower bounds on the group regret. Our proposed algorithms are straightforward to implement and obtain competitive empirical performance.

In this paper, we study the transmission design for reconfigurable intelligent surface (RIS)-aided multiuser communication networks. Different from most of the existing contributions, we consider long-term CSI-based transmission design, where both the beamforming vectors at the base station (BS) and the phase shifts at the RIS are designed based on long-term CSI, which can significantly reduce the channel estimation overhead. Due to the lack of explicit ergodic data rate expression, we propose a novel deep deterministic policy gradient (DDPG) based algorithm to solve the optimization problem, which was trained by using the channel vectors generated in an offline manner. Simulation results demonstrate that the achievable net throughput is higher than that achieved by the conventional instantaneous-CSI based scheme when taking the channel estimation overhead into account.

Domain generalization aims at performing well on unseen test environments with data from a limited number of training environments. Despite a proliferation of proposal algorithms for this task, assessing their performance both theoretically and empirically is still very challenging. Distributional matching algorithms such as (Conditional) Domain Adversarial Networks [Ganin et al., 2016, Long et al., 2018] are popular and enjoy empirical success, but they lack formal guarantees. Other approaches such as Invariant Risk Minimization (IRM) require a prohibitively large number of training environments -- linear in the dimension of the spurious feature space $d_s$ -- even on simple data models like the one proposed by [Rosenfeld et al., 2021]. Under a variant of this model, we show that both ERM and IRM cannot generalize with $o(d_s)$ environments. We then present an iterative feature matching algorithm that is guaranteed with high probability to yield a predictor that generalizes after seeing only $O(\log d_s)$ environments. Our results provide the first theoretical justification for a family of distribution-matching algorithms widely used in practice under a concrete nontrivial data model.

Representation learning lies at the heart of the empirical success of deep learning for dealing with the curse of dimensionality. However, the power of representation learning has not been fully exploited yet in reinforcement learning (RL), due to i), the trade-off between expressiveness and tractability; and ii), the coupling between exploration and representation learning. In this paper, we first reveal the fact that under some noise assumption in the stochastic control model, we can obtain the linear spectral feature of its corresponding Markov transition operator in closed-form for free. Based on this observation, we propose Spectral Dynamics Embedding (SPEDE), which breaks the trade-off and completes optimistic exploration for representation learning by exploiting the structure of the noise. We provide rigorous theoretical analysis of SPEDE, and demonstrate the practical superior performance over the existing state-of-the-art empirical algorithms on several benchmarks.

We study constrained reinforcement learning (CRL) from a novel perspective by setting constraints directly on state density functions, rather than the value functions considered by previous works. State density has a clear physical and mathematical interpretation, and is able to express a wide variety of constraints such as resource limits and safety requirements. Density constraints can also avoid the time-consuming process of designing and tuning cost functions required by value function-based constraints to encode system specifications. We leverage the duality between density functions and Q functions to develop an effective algorithm to solve the density constrained RL problem optimally and the constrains are guaranteed to be satisfied. We prove that the proposed algorithm converges to a near-optimal solution with a bounded error even when the policy update is imperfect. We use a set of comprehensive experiments to demonstrate the advantages of our approach over state-of-the-art CRL methods, with a wide range of density constrained tasks as well as standard CRL benchmarks such as Safety-Gym.

Auto-regressive sequence-to-sequence models with attention mechanism have achieved state-of-the-art performance in many tasks such as machine translation and speech synthesis. These models can be difficult to train. The standard approach, teacher forcing, guides a model with reference output history during training. The problem is that the model is unlikely to recover from its mistakes during inference, where the reference output is replaced by generated output. Several approaches deal with this problem, largely by guiding the model with generated output history. To make training stable, these approaches often require a heuristic schedule or an auxiliary classifier. This paper introduces attention forcing, which guides the model with generated output history and reference attention. This approach can train the model to recover from its mistakes, in a stable fashion, without the need for a schedule or a classifier. In addition, it allows the model to generate output sequences aligned with the references, which can be important for cascaded systems like many speech synthesis systems. Experiments on speech synthesis show that attention forcing yields significant performance gain. Experiments on machine translation show that for tasks where various re-orderings of the output are valid, guiding the model with generated output history is challenging, while guiding the model with reference attention is beneficial.

Automatic generation of paraphrases from a given sentence is an important yet challenging task in natural language processing (NLP), and plays a key role in a number of applications such as question answering, search, and dialogue. In this paper, we present a deep reinforcement learning approach to paraphrase generation. Specifically, we propose a new framework for the task, which consists of a \textit{generator} and an \textit{evaluator}, both of which are learned from data. The generator, built as a sequence-to-sequence learning model, can produce paraphrases given a sentence. The evaluator, constructed as a deep matching model, can judge whether two sentences are paraphrases of each other. The generator is first trained by deep learning and then further fine-tuned by reinforcement learning in which the reward is given by the evaluator. For the learning of the evaluator, we propose two methods based on supervised learning and inverse reinforcement learning respectively, depending on the type of available training data. Empirical study shows that the learned evaluator can guide the generator to produce more accurate paraphrases. Experimental results demonstrate the proposed models (the generators) outperform the state-of-the-art methods in paraphrase generation in both automatic evaluation and human evaluation.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

Machine Learning models become increasingly proficient in complex tasks. However, even for experts in the field, it can be difficult to understand what the model learned. This hampers trust and acceptance, and it obstructs the possibility to correct the model. There is therefore a need for transparency of machine learning models. The development of transparent classification models has received much attention, but there are few developments for achieving transparent Reinforcement Learning (RL) models. In this study we propose a method that enables a RL agent to explain its behavior in terms of the expected consequences of state transitions and outcomes. First, we define a translation of states and actions to a description that is easier to understand for human users. Second, we developed a procedure that enables the agent to obtain the consequences of a single action, as well as its entire policy. The method calculates contrasts between the consequences of a policy derived from a user query, and of the learned policy of the agent. Third, a format for generating explanations was constructed. A pilot survey study was conducted to explore preferences of users for different explanation properties. Results indicate that human users tend to favor explanations about policy rather than about single actions.

This paper proposes a Reinforcement Learning (RL) algorithm to synthesize policies for a Markov Decision Process (MDP), such that a linear time property is satisfied. We convert the property into a Limit Deterministic Buchi Automaton (LDBA), then construct a product MDP between the automaton and the original MDP. A reward function is then assigned to the states of the product automaton, according to accepting conditions of the LDBA. With this reward function, our algorithm synthesizes a policy that satisfies the linear time property: as such, the policy synthesis procedure is "constrained" by the given specification. Additionally, we show that the RL procedure sets up an online value iteration method to calculate the maximum probability of satisfying the given property, at any given state of the MDP - a convergence proof for the procedure is provided. Finally, the performance of the algorithm is evaluated via a set of numerical examples. We observe an improvement of one order of magnitude in the number of iterations required for the synthesis compared to existing approaches.

北京阿比特科技有限公司