This paper considers the Cauchy problem for the nonlinear dynamic string equation of Kirchhoff-type with time-varying coefficients. The objective of this work is to develop a temporal discretization algorithm capable of approximating a solution to this initial-boundary value problem. To this end, a symmetric three-layer semi-discrete scheme is employed with respect to the temporal variable, wherein the value of a nonlinear term is evaluated at the middle node point. This approach enables the numerical solutions per temporal step to be obtained by inverting the linear operators, yielding a system of second-order linear ordinary differential equations. Local convergence of the proposed scheme is established, and it achieves quadratic convergence concerning the step size of the discretization of time on the local temporal interval. We have conducted several numerical experiments using the proposed algorithm for various test problems to validate its performance. It can be said that the obtained numerical results are in accordance with the theoretical findings.
Mixture priors provide an intuitive way to incorporate historical data while accounting for potential prior-data conflict by combining an informative prior with a non-informative prior. However, pre-specifying the mixing weight for each component remains a crucial challenge. Ideally, the mixing weight should reflect the degree of prior-data conflict, which is often unknown beforehand, posing a significant obstacle to the application and acceptance of mixture priors. To address this challenge, we introduce self-adapting mixture (SAM) priors that determine the mixing weight using likelihood ratio test statistics or Bayes factor. SAM priors are data-driven and self-adapting, favoring the informative (non-informative) prior component when there is little (substantial) evidence of prior-data conflict. Consequently, SAM priors achieve dynamic information borrowing. We demonstrate that SAM priors exhibit desirable properties in both finite and large samples and achieve information-borrowing consistency. Moreover, SAM priors are easy to compute, data-driven, and calibration-free, mitigating the risk of data dredging. Numerical studies show that SAM priors outperform existing methods in adopting prior-data conflicts effectively. We developed an R package and web application that are freely available to facilitate the use of SAM priors.
For a singular integral equation on an interval of the real line, we study the behavior of the error of a delta-delta discretization. We show that the convergence is non-uniform, between order $O(h^{2})$ in the interior of the interval and a boundary layer where the consistency error does not tend to zero.
The logistic regression model is one of the most powerful statistical methods for the analysis of binary data. The logistic regression allows to use a set of covariates to explain the binary responses. The mixture of logistic regression models is used to fit heterogeneous populations through an unsupervised learning approach. The multicollinearity problem is one of the most common problems in logistics and a mixture of logistic regressions where the covariates are highly correlated. This problem results in unreliable maximum likelihood estimates for the regression coefficients. This research developed shrinkage methods to deal with the multicollinearity in a mixture of logistic regression models. These shrinkage methods include ridge and Liu-type estimators. Through extensive numerical studies, we show that the developed methods provide more reliable results in estimating the coefficients of the mixture. Finally, we applied the shrinkage methods to analyze the bone disorder status of women aged 50 and older.
This paper introduces a prognostic method called FLASH that addresses the problem of joint modelling of longitudinal data and censored durations when a large number of both longitudinal and time-independent features are available. In the literature, standard joint models are either of the shared random effect or joint latent class type. Combining ideas from both worlds and using appropriate regularisation techniques, we define a new model with the ability to automatically identify significant prognostic longitudinal features in a high-dimensional context, which is of increasing importance in many areas such as personalised medicine or churn prediction. We develop an estimation methodology based on the EM algorithm and provide an efficient implementation. The statistical performance of the method is demonstrated both in extensive Monte Carlo simulation studies and on publicly available real-world datasets. Our method significantly outperforms the state-of-the-art joint models in predicting the latent class membership probability in terms of the C-index in a so-called ``real-time'' prediction setting, with a computational speed that is orders of magnitude faster than competing methods. In addition, our model automatically identifies significant features that are relevant from a practical perspective, making it interpretable.
This paper shows how to use the shooting method, a classical numerical algorithm for solving boundary value problems, to compute the Riemannian distance on the Stiefel manifold $\mathrm{St}(n,p)$, the set of $ n \times p $ matrices with orthonormal columns. The main feature is that we provide neat, explicit expressions for the Jacobians. To the author's knowledge, this is the first time some explicit formulas are given for the Jacobians involved in the shooting methods to find the distance between two given points on the Stiefel manifold. This allows us to perform a preliminary analysis for the single shooting method. Numerical experiments demonstrate the algorithms in terms of accuracy and performance. Finally, we showcase three example applications in summary statistics, shape analysis, and model order reduction.
We study the optimization problem of choosing strings of finite length to maximize string submodular functions on string matroids, which is a broader class of problems than maximizing set submodular functions on set matroids. We provide a lower bound for the performance of the greedy algorithm in our problem, and then prove that our bound is superior to the greedy curvature bound of Conforti and Cornuejols. Our bound has lower computational complexity than most previously proposed curvature bounds. Finally, we demonstrate the strength of our result on a sensor coverage problem.
First-order energy dissipative schemes in time are available in literature for the Poisson-Nernst-Planck (PNP) equations, but second-order ones are still in lack. This work proposes novel second-order discretization in time and finite volume discretization in space for modified PNP equations that incorporate effects arising from ionic steric interactions and dielectric inhomogeneity. A multislope method on unstructured meshes is proposed to reconstruct positive, accurate approximations of mobilities on faces of control volumes. Numerical analysis proves that the proposed numerical schemes are able to unconditionally ensure the existence of positive numerical solutions, original energy dissipation, mass conservation, and preservation of steady states at discrete level. Extensive numerical simulations are conducted to demonstrate numerical accuracy and performance in preserving properties of physical significance. Applications in ion permeation through a 3D nanopore show that the modified PNP model, equipped with the proposed schemes, has promising applications in the investigation of ion selectivity and rectification. The proposed second-order discretization can be extended to design temporal second-order schemes with original energy dissipation for a type of gradient flow problems with entropy.
This paper introduces a formulation of the variable density incompressible Navier-Stokes equations by modifying the nonlinear terms in a consistent way. For Galerkin discretizations, the formulation leads to full discrete conservation of mass, squared density, momentum, angular momentum and kinetic energy without the divergence-free constraint being strongly enforced. In addition to favorable conservation properties, the formulation is shown to make the density field invariant to global shifts. The effect of viscous regularizations on conservation properties is also investigated. Numerical tests validate the theory developed in this work. The new formulation shows superior performance compared to other formulations from the literature, both in terms of accuracy for smooth problems and in terms of robustness.
We introduce a new class of Discontinuous Galerkin (DG) methods for solving nonlinear conservation laws on unstructured Voronoi meshes that use a nonconforming Virtual Element basis defined within each polygonal control volume. The basis functions are evaluated as an L2 projection of the virtual basis which remains unknown, along the lines of the Virtual Element Method (VEM). Contrarily to the VEM approach, the new basis functions lead to a nonconforming representation of the solution with discontinuous data across the element boundaries, as typically employed in DG discretizations. To improve the condition number of the resulting mass matrix, an orthogonalization of the full basis is proposed. The discretization in time is carried out following the ADER (Arbitrary order DERivative Riemann problem) methodology, which yields one-step fully discrete schemes that make use of a coupled space-time representation of the numerical solution. The space-time basis functions are constructed as a tensor product of the virtual basis in space and a one-dimensional Lagrange nodal basis in time. The resulting space-time stiffness matrix is stabilized by an extension of the dof-dof stabilization technique adopted in the VEM framework, hence allowing an element-local space-time Galerkin finite element predictor to be evaluated. The novel methods are referred to as VEM-DG schemes, and they are arbitrarily high order accurate in space and time. The new VEM-DG algorithms are rigorously validated against a series of benchmarks in the context of compressible Euler and Navier-Stokes equations. Numerical results are verified with respect to literature reference solutions and compared in terms of accuracy and computational efficiency to those obtained using a standard modal DG scheme with Taylor basis functions. An analysis of the condition number of the mass and space-time stiffness matrix is also forwarded.
Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.