First-order energy dissipative schemes in time are available in literature for the Poisson-Nernst-Planck (PNP) equations, but second-order ones are still in lack. This work proposes novel second-order discretization in time and finite volume discretization in space for modified PNP equations that incorporate effects arising from ionic steric interactions and dielectric inhomogeneity. A multislope method on unstructured meshes is proposed to reconstruct positive, accurate approximations of mobilities on faces of control volumes. Numerical analysis proves that the proposed numerical schemes are able to unconditionally ensure the existence of positive numerical solutions, original energy dissipation, mass conservation, and preservation of steady states at discrete level. Extensive numerical simulations are conducted to demonstrate numerical accuracy and performance in preserving properties of physical significance. Applications in ion permeation through a 3D nanopore show that the modified PNP model, equipped with the proposed schemes, has promising applications in the investigation of ion selectivity and rectification. The proposed second-order discretization can be extended to design temporal second-order schemes with original energy dissipation for a type of gradient flow problems with entropy.
A cost-effective alternative to manual data labeling is weak supervision (WS), where data samples are automatically annotated using a predefined set of labeling functions (LFs), rule-based mechanisms that generate artificial labels for the associated classes. In this work, we investigate noise reduction techniques for WS based on the principle of k-fold cross-validation. We introduce a new algorithm ULF for Unsupervised Labeling Function correction, which denoises WS data by leveraging models trained on all but some LFs to identify and correct biases specific to the held-out LFs. Specifically, ULF refines the allocation of LFs to classes by re-estimating this assignment on highly reliable cross-validated samples. Evaluation on multiple datasets confirms ULF's effectiveness in enhancing WS learning without the need for manual labeling.
Online gradient descent (OGD) is well known to be doubly optimal under strong convexity or monotonicity assumptions: (1) in the single-agent setting, it achieves an optimal regret of $\Theta(\log T)$ for strongly convex cost functions; and (2) in the multi-agent setting of strongly monotone games, with each agent employing OGD, we obtain last-iterate convergence of the joint action to a unique Nash equilibrium at an optimal rate of $\Theta(\frac{1}{T})$. While these finite-time guarantees highlight its merits, OGD has the drawback that it requires knowing the strong convexity/monotonicity parameters. In this paper, we design a fully adaptive OGD algorithm, \textsf{AdaOGD}, that does not require a priori knowledge of these parameters. In the single-agent setting, our algorithm achieves $O(\log^2(T))$ regret under strong convexity, which is optimal up to a log factor. Further, if each agent employs \textsf{AdaOGD} in strongly monotone games, the joint action converges in a last-iterate sense to a unique Nash equilibrium at a rate of $O(\frac{\log^3 T}{T})$, again optimal up to log factors. We illustrate our algorithms in a learning version of the classical newsvendor problem, where due to lost sales, only (noisy) gradient feedback can be observed. Our results immediately yield the first feasible and near-optimal algorithm for both the single-retailer and multi-retailer settings. We also extend our results to the more general setting of exp-concave cost functions and games, using the online Newton step (ONS) algorithm.
Creating large-scale and well-annotated datasets to train AI algorithms is crucial for automated tumor detection and localization. However, with limited resources, it is challenging to determine the best type of annotations when annotating massive amounts of unlabeled data. To address this issue, we focus on polyps in colonoscopy videos and pancreatic tumors in abdominal CT scans; both applications require significant effort and time for pixel-wise annotation due to the high dimensional nature of the data, involving either temporary or spatial dimensions. In this paper, we develop a new annotation strategy, termed Drag&Drop, which simplifies the annotation process to drag and drop. This annotation strategy is more efficient, particularly for temporal and volumetric imaging, than other types of weak annotations, such as per-pixel, bounding boxes, scribbles, ellipses, and points. Furthermore, to exploit our Drag&Drop annotations, we develop a novel weakly supervised learning method based on the watershed algorithm. Experimental results show that our method achieves better detection and localization performance than alternative weak annotations and, more importantly, achieves similar performance to that trained on detailed per-pixel annotations. Interestingly, we find that, with limited resources, allocating weak annotations from a diverse patient population can foster models more robust to unseen images than allocating per-pixel annotations for a small set of images. In summary, this research proposes an efficient annotation strategy for tumor detection and localization that is less accurate than per-pixel annotations but useful for creating large-scale datasets for screening tumors in various medical modalities.
Despite their popularity in the field of continuous optimisation, second-order quasi-Newton methods are challenging to apply in machine learning, as the Hessian matrix is intractably large. This computational burden is exacerbated by the need to address non-convexity, for instance by modifying the Hessian's eigenvalues as in Saddle-Free Newton methods. We propose an optimisation algorithm which addresses both of these concerns - to our knowledge, the first efficiently-scalable optimisation algorithm to asymptotically use the exact (eigenvalue-modified) inverse Hessian. Our method frames the problem as a series which principally square-roots and inverts the squared Hessian, then uses it to precondition a gradient vector, all without explicitly computing or eigendecomposing the Hessian. A truncation of this infinite series provides a new optimisation algorithm which is scalable and comparable to other first- and second-order optimisation methods in both runtime and optimisation performance. We demonstrate this in a variety of settings, including a ResNet-18 trained on CIFAR-10.
This article discusses the uncertainty quantification (UQ) for time-independent linear and nonlinear partial differential equation (PDE)-based systems with random model parameters carried out using sampling-free intrusive stochastic Galerkin method leveraging multilevel scalable solvers constructed combining two-grid Schwarz method and AMG. High-resolution spatial meshes along with a large number of stochastic expansion terms increase the system size leading to significant memory consumption and computational costs. Domain decomposition (DD)-based parallel scalable solvers are developed to this end for linear and nonlinear stochastic PDEs. A generalized minimum residual (GMRES) iterative solver equipped with a multilevel preconditioner consisting of restricted additive Schwarz (RAS) for the fine grid and algebraic multigrid (AMG) for the coarse grid is constructed to improve scalability. Numerical experiments illustrate the scalabilities of the proposed solver for stochastic linear and nonlinear Poisson problems.
Large integer factorization is a prominent research challenge, particularly in the context of quantum computing. This holds significant importance, especially in information security that relies on public key cryptosystems. The classical computation of prime factors for an integer has exponential time complexity. Quantum computing offers the potential for significantly faster computational processes compared to classical processors. In this paper, we propose a new quantum algorithm, Shallow Depth Factoring (SDF), to factor a biprime integer. SDF consists of three steps. First, it converts a factoring problem to an optimization problem without an objective function. Then, it uses a Quantum Feasibility Labeling (QFL) method to label every possible solution according to whether it is feasible or infeasible for the optimization problem. Finally, it employs the Variational Quantum Search (VQS) to find all feasible solutions. The SDF utilizes shallow-depth quantum circuits for efficient factorization, with the circuit depth scaling linearly as the integer to be factorized increases. Through minimizing the number of gates in the circuit, the algorithm enhances feasibility and reduces vulnerability to errors.
We propose a novel non-negative spherical relaxation for optimization problems over binary matrices with injectivity constraints, which in particular has applications in multi-matching and clustering. We relax respective binary matrix constraints to the (high-dimensional) non-negative sphere. To optimize our relaxed problem, we use a conditional power iteration method to iteratively improve the objective function, while at same time sweeping over a continuous scalar parameter that is (indirectly) related to the universe size (or number of clusters). Opposed to existing procedures that require to fix the integer universe size before optimization, our method automatically adjusts the analogous continuous parameter. Furthermore, while our approach shares similarities with spectral multi-matching and spectral clustering, our formulation has the strong advantage that we do not rely on additional post-processing procedures to obtain binary results. Our method shows compelling results in various multi-matching and clustering settings, even when compared to methods that use the ground truth universe size (or number of clusters).
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics and AI, with numerous applications in real-world scenarios. One such scenario is filming scenes with multiple actors, where the goal is to capture the scene from multiple angles simultaneously. Here, we present a formation-based filming directive of task assignment followed by a Conflict-Based MAPF algorithm for efficient path planning of multiple agents to achieve filming objectives while avoiding collisions. We propose an extension to the standard MAPF formulation to accommodate actor-specific requirements and constraints. Our approach incorporates Conflict-Based Search, a widely used heuristic search technique for solving MAPF problems. We demonstrate the effectiveness of our approach through experiments on various MAPF scenarios in a simulated environment. The proposed algorithm enables the efficient online task assignment of formation-based filming to capture dynamic scenes, making it suitable for various filming and coverage applications.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.