This article discusses the uncertainty quantification (UQ) for time-independent linear and nonlinear partial differential equation (PDE)-based systems with random model parameters carried out using sampling-free intrusive stochastic Galerkin method leveraging multilevel scalable solvers constructed combining two-grid Schwarz method and AMG. High-resolution spatial meshes along with a large number of stochastic expansion terms increase the system size leading to significant memory consumption and computational costs. Domain decomposition (DD)-based parallel scalable solvers are developed to this end for linear and nonlinear stochastic PDEs. A generalized minimum residual (GMRES) iterative solver equipped with a multilevel preconditioner consisting of restricted additive Schwarz (RAS) for the fine grid and algebraic multigrid (AMG) for the coarse grid is constructed to improve scalability. Numerical experiments illustrate the scalabilities of the proposed solver for stochastic linear and nonlinear Poisson problems.
We derive optimality conditions for the optimum sample allocation problem in stratified sampling, formulated as the determination of the fixed strata sample sizes that minimize the total cost of the survey, under the assumed level of variance of the stratified $\pi$ estimator of the population total (or mean) and one-sided upper bounds imposed on sample sizes in strata. In this context, we presume that the variance function is of some generic form that, in particular, covers the case of the simple random sampling without replacement design in strata. The optimality conditions mentioned above will be derived from the Karush-Kuhn-Tucker conditions. Based on the established optimality conditions, we provide a formal proof of the optimality of the existing procedure, termed here as LRNA, which solves the allocation problem considered. We formulate the LRNA in such a way that it also provides the solution to the classical optimum allocation problem (i.e. minimization of the estimator's variance under a fixed total cost) under one-sided lower bounds imposed on sample sizes in strata. In this context, the LRNA can be considered as a counterparty to the popular recursive Neyman allocation procedure that is used to solve the classical problem of an optimum sample allocation with added one-sided upper bounds. Ready-to-use R-implementation of the LRNA is available through our stratallo package, which is published on the Comprehensive R Archive Network (CRAN) package repository.
The multiobjective evolutionary optimization algorithm (MOEA) is a powerful approach for tackling multiobjective optimization problems (MOPs), which can find a finite set of approximate Pareto solutions in a single run. However, under mild regularity conditions, the Pareto optimal set of a continuous MOP could be a low dimensional continuous manifold that contains infinite solutions. In addition, structure constraints on the whole optimal solution set, which characterize the patterns shared among all solutions, could be required in many real-life applications. It is very challenging for existing finite population based MOEAs to handle these structure constraints properly. In this work, we propose the first model-based algorithmic framework to learn the whole solution set with structure constraints for multiobjective optimization. In our approach, the Pareto optimality can be traded off with a preferred structure among the whole solution set, which could be crucial for many real-world problems. We also develop an efficient evolutionary learning method to train the set model with structure constraints. Experimental studies on benchmark test suites and real-world application problems demonstrate the promising performance of our proposed framework.
Coupled partial differential equations (PDEs) are key tasks in modeling the complex dynamics of many physical processes. Recently, neural operators have shown the ability to solve PDEs by learning the integral kernel directly in Fourier/Wavelet space, so the difficulty for solving the coupled PDEs depends on dealing with the coupled mappings between the functions. Towards this end, we propose a \textit{coupled multiwavelets neural operator} (CMWNO) learning scheme by decoupling the coupled integral kernels during the multiwavelet decomposition and reconstruction procedures in the Wavelet space. The proposed model achieves significantly higher accuracy compared to previous learning-based solvers in solving the coupled PDEs including Gray-Scott (GS) equations and the non-local mean field game (MFG) problem. According to our experimental results, the proposed model exhibits a $2\times \sim 4\times$ improvement relative $L$2 error compared to the best results from the state-of-the-art models.
Estimation of quantum relative entropy and its R\'{e}nyi generalizations is a fundamental statistical task in quantum information theory, physics, and beyond. While several estimators of these divergences have been proposed in the literature along with their computational complexities explored, a limit distribution theory which characterizes the asymptotic fluctuations of the estimation error is still premature. As our main contribution, we characterize these asymptotic distributions in terms of Fr\'{e}chet derivatives of elementary operator-valued functions. We achieve this by leveraging an operator version of Taylor's theorem and identifying the regularity conditions needed. As an application of our results, we consider an estimator of quantum relative entropy based on Pauli tomography of quantum states and show that the resulting asymptotic distribution is a centered normal, with its variance characterized in terms of the Pauli operators and states. We utilize the knowledge of the aforementioned limit distribution to obtain asymptotic performance guarantees for a multi-hypothesis testing problem.
Estimating the parameters of ordinary differential equations (ODEs) is of fundamental importance in many scientific applications. While ODEs are typically approximated with deterministic algorithms, new research on probabilistic solvers indicates that they produce more reliable parameter estimates by better accounting for numerical errors. However, many ODE systems are highly sensitive to their parameter values. This produces deep local maxima in the likelihood function -- a problem which existing probabilistic solvers have yet to resolve. Here we present a novel probabilistic ODE likelihood approximation, DALTON, which can dramatically reduce parameter sensitivity by learning from noisy ODE measurements in a data-adaptive manner. Our approximation scales linearly in both ODE variables and time discretization points, and is applicable to ODEs with both partially-unobserved components and non-Gaussian measurement models. Several examples demonstrate that DALTON produces more accurate parameter estimates via numerical optimization than existing probabilistic ODE solvers, and even in some cases than the exact ODE likelihood itself.
We construct a quasi-polynomial time deterministic approximation algorithm for computing the volume of an independent set polytope with restrictions. Randomized polynomial time approximation algorithms for computing the volume of a convex body have been known now for several decades, but the corresponding deterministic counterparts are not available, and our algorithm is the first of this kind. The class of polytopes for which our algorithm applies arises as linear programming relaxation of the independent set problem with the additional restriction that each variable takes value in the interval $[0,1-\alpha]$ for some $\alpha<1/2$. (We note that the $\alpha\ge 1/2$ case is trivial). We use the correlation decay method for this problem applied to its appropriate and natural discretization. The method works provided $\alpha> 1/2-O(1/\Delta^2)$, where $\Delta$ is the maximum degree of the graph. When $\Delta=3$ (the sparsest non-trivial case), our method works provided $0.488<\alpha<0.5$. Interestingly, the interpolation method, which is based on analyzing complex roots of the associated partition functions, fails even in the trivial case when the underlying graph is a singleton.
We propose a new framework to design and analyze accelerated methods that solve general monotone equation (ME) problems $F(x)=0$. Traditional approaches include generalized steepest descent methods and inexact Newton-type methods. If $F$ is uniformly monotone and twice differentiable, these methods achieve local convergence rates while the latter methods are globally convergent thanks to line search and hyperplane projection. However, a global rate is unknown for these methods. The variational inequality methods can be applied to yield a global rate that is expressed in terms of $\|F(x)\|$ but these results are restricted to first-order methods and a Lipschitz continuous operator. It has not been clear how to obtain global acceleration using high-order Lipschitz continuity. This paper takes a continuous-time perspective where accelerated methods are viewed as the discretization of dynamical systems. Our contribution is to propose accelerated rescaled gradient systems and prove that they are equivalent to closed-loop control systems. Based on this connection, we establish the properties of solution trajectories. Moreover, we provide a unified algorithmic framework obtained from discretization of our system, which together with two approximation subroutines yields both existing high-order methods and new first-order methods. We prove that the $p^{th}$-order method achieves a global rate of $O(k^{-p/2})$ in terms of $\|F(x)\|$ if $F$ is $p^{th}$-order Lipschitz continuous and the first-order method achieves the same rate if $F$ is $p^{th}$-order strongly Lipschitz continuous. If $F$ is strongly monotone, the restarted versions achieve local convergence with order $p$ when $p \geq 2$. Our discrete-time analysis is largely motivated by the continuous-time analysis and demonstrates the fundamental role that rescaled gradients play in global acceleration for solving ME problems.
We prove the expected disturbance caused to a quantum system by a sequence of randomly ordered two-outcome projective measurements is upper bounded by the square root of the probability that at least one measurement in the sequence accepts. We call this bound the Gentle Random Measurement Lemma. We then consider problems in which we are given sample access to an unknown state $\rho$ and asked to estimate properties of the accepting probabilities $\text{Tr}[M_i \rho]$ of a set of measurements $\{M_1, M_2, \ldots , M_m\}$. We call these types of problems Quantum Event Learning Problems. Using the gentle random measurement lemma, we show randomly ordering projective measurements solves the Quantum OR problem, answering an open question of Aaronson. We also give a Quantum OR protocol which works on non-projective measurements but which requires a more complicated type of measurement, which we call a Blended Measurement. Given additional guarantees on the set of measurements $\{M_1, \ldots, M_m\}$, we show the Quantum OR protocols developed in this paper can also be used to find a measurement $M_i$ such that $\text{Tr}[M_i \rho]$ is large. We also give a blended measurement based protocol for estimating the average accepting probability of a set of measurements on an unknown state. Finally we consider the Threshold Search Problem described by O'Donnell and B\u{a}descu. By building on our Quantum Event Finding result we show that randomly ordered (or blended) measurements can be used to solve this problem using $O(\log^2(m) / \epsilon^2)$ copies of $\rho$. Consequently, we obtain an algorithm for Shadow Tomography which requires $\tilde{O}(\log^2(m)\log(d)/\epsilon^4)$ samples, matching the current best known sample complexity. This algorithm does not require injected noise in the quantum measurements, but does require measurements to be made in a random order and so is no longer online.
We study functional dependencies together with two different probabilistic dependency notions: unary marginal identity and unary marginal distribution equivalence. A unary marginal identity states that two variables x and y are identically distributed. A unary marginal distribution equivalence states that the multiset consisting of the marginal probabilities of all the values for variable x is the same as the corresponding multiset for y. We present a sound and complete axiomatization for the class of these dependencies and show that it has Armstrong relations. The axiomatization is infinite, but we show that there can be no finite axiomatization. The implication problem for the subclass that contains only functional dependencies and unary marginal identities can be simulated with functional dependencies and unary inclusion atoms, and therefore the problem is in polynomial-time. This complexity bound also holds in the case of the full class, which we show by constructing a polynomial-time algorithm.
Gradient-based minimax optimal algorithms have greatly promoted the development of continuous optimization and machine learning. One seminal work due to Yurii Nesterov [Nes83a] established $\tilde{\mathcal{O}}(\sqrt{L/\mu})$ gradient complexity for minimizing an $L$-smooth $\mu$-strongly convex objective. However, an ideal algorithm would adapt to the explicit complexity of a particular objective function and incur faster rates for simpler problems, triggering our reconsideration of two defeats of existing optimization modeling and analysis. (i) The worst-case optimality is neither the instance optimality nor such one in reality. (ii) Traditional $L$-smoothness condition may not be the primary abstraction/characterization for modern practical problems. In this paper, we open up a new way to design and analyze gradient-based algorithms with direct applications in machine learning, including linear regression and beyond. We introduce two factors $(\alpha, \tau_{\alpha})$ to refine the description of the degenerated condition of the optimization problems based on the observation that the singular values of Hessian often drop sharply. We design adaptive algorithms that solve simpler problems without pre-known knowledge with reduced gradient or analogous oracle accesses. The algorithms also improve the state-of-art complexities for several problems in machine learning, thereby solving the open problem of how to design faster algorithms in light of the known complexity lower bounds. Specially, with the $\mathcal{O}(1)$-nuclear norm bounded, we achieve an optimal $\tilde{\mathcal{O}}(\mu^{-1/3})$ (v.s. $\tilde{\mathcal{O}}(\mu^{-1/2})$) gradient complexity for linear regression. We hope this work could invoke the rethinking for understanding the difficulty of modern problems in optimization.