The current amount of IoT devices and their limitations has come to serve as a motivation for malicious entities to take advantage of such devices and use them for their own gain. To protect against cyberattacks in IoT devices, Machine Learning techniques can be applied to Intrusion Detection Systems. Moreover, privacy related issues associated with centralized approaches can be mitigated through Federated Learning. This work proposes a Host-based Intrusion Detection Systems that leverages Federated Learning and Multi-Layer Perceptron neural networks to detected cyberattacks on IoT devices with high accuracy and enhancing data privacy protection.
Existing FL-based approaches are based on the unrealistic assumption that the data on the client-side is fully annotated with ground truths. Furthermore, it is a great challenge how to improve the training efficiency while ensuring the detection accuracy in the highly heterogeneous and resource-constrained IoT networks. Meanwhile, the communication cost between clients and the server is also a problem that can not be ignored. Therefore, in this paper, we propose a Federated Semi-Supervised and Semi-Asynchronous (FedS3A) learning for anomaly detection in IoT networks. First, we consider a more realistic assumption that labeled data is only available at the server, and pseudo-labeling is utilized to implement federated semi-supervised learning, in which a dynamic weight of supervised learning is exploited to balance the supervised learning at the server and unsupervised learning at clients. Then, we propose a semi-asynchronous model update and staleness tolerant distribution scheme to achieve a trade-off between the round efficiency and detection accuracy. Meanwhile, the staleness of local models and the participation frequency of clients are considered to adjust their contributions to the global model. In addition, a group-based aggregation function is proposed to deal with the non-IID distribution of the data. Finally, the difference transmission based on the sparse matrix is adopted to reduce the communication cost. Extensive experimental results show that FedS3A can achieve greater than 98% accuracy even when the data is non-IID and is superior to the classic FL-based algorithms in terms of both detection performance and round efficiency, achieving a win-win situation. Meanwhile, FedS3A successfully reduces the communication cost by higher than 50%.
Cloud computing is one of the most used distributed systems for data processing and data storage. Due to the continuous increase in the size of the data processed by cloud computing, scheduling multiple tasks to maintain efficiency while reducing idle becomes more and more challenging. Efficient cloud-based scheduling is also highly sought by modern transportation systems to improve their security. In this paper, we propose a hybrid algorithm that leverages genetic algorithms and neural networks to improve scheduling. Our method classifies tasks with the Neural Network Task Classification (N2TC) and sends the selected tasks to the Genetic Algorithm Task Assignment (GATA) to allocate resources. It is fairness aware to prevent starvation and considers the execution time, response time, cost, and system efficiency. Evaluations show that our approach outperforms the state-of-the-art method by 3.2% at execution time, 13.3% in costs, and 12.1% at response time.
Algorithmic Fairness and the explainability of potentially unfair outcomes are crucial for establishing trust and accountability of Artificial Intelligence systems in domains such as healthcare and policing. Though significant advances have been made in each of the fields separately, achieving explainability in fairness applications remains challenging, particularly so in domains where deep neural networks are used. At the same time, ethical data-mining has become ever more relevant, as it has been shown countless times that fairness-unaware algorithms result in biased outcomes. Current approaches focus on mitigating biases in the outcomes of the model, but few attempts have been made to try to explain \emph{why} a model is biased. To bridge this gap, we propose a comprehensive approach that leverages optimal transport theory to uncover the causes and implications of biased regions in images, which easily extends to tabular data as well. Through the use of Wasserstein barycenters, we obtain scores that are independent of a sensitive variable but keep their marginal orderings. This step ensures predictive accuracy but also helps us to recover the regions most associated with the generation of the biases. Our findings hold significant implications for the development of trustworthy and unbiased AI systems, fostering transparency, accountability, and fairness in critical decision-making scenarios across diverse domains.
Recent advances in Unmanned Aerial Vehicles (UAVs) have resulted in their quick adoption for wide a range of civilian applications, including precision agriculture, biosecurity, disaster monitoring and surveillance. UAVs offer low-cost platforms with flexible hardware configurations, as well as an increasing number of autonomous capabilities, including take-off, landing, object tracking and obstacle avoidance. However, little attention has been paid to how UAVs deal with object detection uncertainties caused by false readings from vision-based detectors, data noise, vibrations, and occlusion. In most situations, the relevance and understanding of these detections are delegated to human operators, as many UAVs have limited cognition power to interact autonomously with the environment. This paper presents a framework for autonomous navigation under uncertainty in outdoor scenarios for small UAVs using a probabilistic-based motion planner. The framework is evaluated with real flight tests using a sub 2 kg quadrotor UAV and illustrated in victim finding Search and Rescue (SAR) case study in a forest/bushland. The navigation problem is modelled using a Partially Observable Markov Decision Process (POMDP), and solved in real time onboard the small UAV using Augmented Belief Trees (ABT) and the TAPIR toolkit. Results from experiments using colour and thermal imagery show that the proposed motion planner provides accurate victim localisation coordinates, as the UAV has the flexibility to interact with the environment and obtain clearer visualisations of any potential victims compared to the baseline motion planner. Incorporating this system allows optimised UAV surveillance operations by diminishing false positive readings from vision-based object detectors.
Blockchains require deterministic execution in order to reach consensus. This is often guaranteed in languages designed to write smart contracts, such as Solidity. Application-specific blockchains or ``appchains'' allow the blockchain application logic to be written using general-purpose programming languages, giving developers more flexibility but also additional responsibilities. In particular, developers must ensure that their blockchain application logic does not contain any sources of non-determinism. Any source of non-determinism may be a potential source of vulnerabilities. This paper focuses on the use of Static Application Security Testing (SAST) tools to detect such sources of non-determinism at development time. We focus on Cosmos, a prominent open-source project that lets developers build interconnected networks of application-specific blockchains. Cosmos provides a Software Development Kit (SDK) that allows these chains to be implemented in the Go programming language. We create a corpus of 11 representative Cosmos-based appchains to analyze for sources of non-determinism in Go. As part of our study, we identified cosmos-sdk-codeql, a set of CodeQL code analysis rules for Cosmos applications. We find that these rules generate many false positives and propose a refactored set of rules that more precisely detects sources of non-determinism only in code that runs as part of the blockchain logic. We demonstrate a significant increase in the precision of the rules, making the SAST tool more effective and hence potentially contributing to enhanced security for Cosmos-based blockchains.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.